K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét  ΔAEH vuông tại E và  ΔAHB vuông tại H có

góc EAH chung

=> ΔAEH đồng dạng với  ΔAHB

b:  ΔAHB vuông tại H có HE vuông góc AB

nên AH^2=AE*AB

 ΔAHC vuông tại H

mà HF là đường cao

nên AF*AC=AH^2=AE*AB

c: AE*AB=AF*AC

=>AE/AC=AF/AB

=> ΔAEF đồng dạng với  ΔACB

d: Xét  ΔMEB và  ΔMCF có

góc MEB=góc MCF

góc M chung

=> ΔMEB đồng dạng với  ΔMCF

=>ME/MC=MB/MF

=>ME*MF=MB*MC

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

4 tháng 1 2019

a, Ta có: ∆AEF ~ ∆MCE (c.g.c)

=>  A F E ^ = A C B ^

b, Ta có: ∆MFB ~ ∆MCE (g.g)

=> ME.MF = MB.MC

22 tháng 4 2017

Bấn vô chỗ này hộ mk ! 

V

22 tháng 4 2017

CHỖ NÀO