Tìm \(x\) biết:
14 x \(x\) + \(x\) x 26 = 25
help mik zới
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(14\times x+x\times26=25\\ \Rightarrow x\times\left(14+26\right)=25\\ \Rightarrow x\times40=25\\ \Rightarrow x=25:40\\ \Rightarrow x=\dfrac{5}{8}\)
Vậy \(x=\dfrac{5}{8}\)
Câu hỏi của Nguyễn Bảo Ngân - Toán lớp 4 - Học toán với OnlineMath
Bạn tham khảo.
14x X + X x 26 = 25
X x ( 14 +26 ) = 25
X x 40=25
X = 25 : 40
x = 0,625
#Gà
\(14x+26x=25\)
\(\Leftrightarrow x\left(14+26\right)=25\)
\(\Leftrightarrow40x=25\)
\(\Leftrightarrow x=\frac{25}{40}\)
\(\Leftrightarrow x=\frac{5}{8}\)
a)
\(\left(x-\dfrac{2}{3}\right):\dfrac{1}{2}=\dfrac{5}{7}\)
\(\Rightarrow x-\dfrac{2}{3}=\dfrac{5}{7}\) x \(\dfrac{1}{2}\)
\(\Rightarrow x-\dfrac{2}{3}=\dfrac{5}{14}\)
\(\Rightarrow x=\dfrac{5}{14}+\dfrac{2}{3}\)
\(\Rightarrow x=\dfrac{15}{42}+\dfrac{2}{42}\)
\(\Rightarrow x=\dfrac{17}{42}\)
b)
\(x\) x \(\dfrac{1}{2}=1-\dfrac{1}{3}\)
\(x\) x \(\dfrac{1}{2}=\dfrac{3}{3}-\dfrac{1}{3}\)
\(x\) x \(\dfrac{1}{2}=\dfrac{2}{3}\)
\(\Rightarrow x=\dfrac{2}{3}:\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{2}{3}\) x \(2=\dfrac{4}{3}\)
c)
\(\dfrac{26}{5}-x=\dfrac{9}{15}\) x \(\dfrac{25}{3}\)
\(\dfrac{26}{5}-x=5\)
\(\Rightarrow x=\dfrac{26}{5}-5\)
\(\Rightarrow x=\dfrac{26}{5}-\dfrac{25}{5}\)
\(\Rightarrow x=\dfrac{1}{5}\)
a) (-2) . ( x+7 ) + (-5) = 7
<=>(-2).(x+7)=7+5
<=>x+7=12:(-2)
<=>x+7=-6
<=>x=(-6)-7
<=>x=-13
Vậy x=-13
b)(x+4) : (-7) = 14
<=>x+4=14 x (-7)
<=>x+4=-98
<=>x=-98-4
<=>x=-102
Vậy x= -102
c) 72 : ( x+5) - 4 = -12
<=>72:(x+5)=(-12)+4
<=>x+5=72:(-8)
<=>x+5=-9
<=>x=-9-5
<=>x=-14
Vậy x= -14
d) (x+3) : (-6 ) + 12 = 8
<=>(x+3) :(-6)=8-12
<=>x+3=(-4)x(-6)
<=>x+3=24
<=>x=24-3
<=>x=21
Vậy x= 21
\(\Leftrightarrow14-\frac{72}{-\left(8+x\right)}=-23\)
\(\Leftrightarrow37+\frac{72}{8+x}=0\)
\(\Leftrightarrow37\left(8+x\right)+72=0\)
\(\Leftrightarrow296+37x+72=0\)
\(\Leftrightarrow37x=-368\Leftrightarrow x=-\frac{368}{37}\)
14 x \(x\) + \(x\) x 26 = 25
( 14 + 26 ) x \(x\) = 25
40 x \(x\) = 25
\(x\) = 25 : 40
\(x\) = \(\dfrac{5}{8}\)