K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

A B C D H E I

Lấy E đối xứng với D qua AB, ED cắt AB tại I

Vì AD là phân giác \(\widehat{BAC}\)\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}< 1\)

\(\Rightarrow BD< CD\)

\(\Rightarrow BC>2BD\)

Vì DI // CH

\(\Rightarrow\frac{DI}{CH}=\frac{BD}{BC}< \frac{1}{2}\)

\(\Rightarrow CH>2DI=DE\left(1\right)\)

Xét \(\Delta ABC\)ta có: \(AB< AC< BC\)

\(\Rightarrow\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)

\(\Rightarrow2\widehat{BAC}>\widehat{ACB}+\widehat{ABC}\)

\(\Rightarrow\widehat{BAC}>\frac{\widehat{ACB}+\widehat{ABC}}{2}=\frac{180^o-\widehat{BAC}}{2}\)

Xét \(\Delta AED\)ta có:

\(\widehat{AED}=\widehat{ADE}=\frac{180^o-\widehat{EAD}}{2}=\frac{180^o-\widehat{BAC}}{2}< \widehat{BAC}=\widehat{EAD}\)

\(\Rightarrow ED>AE=AD\left(2\right)\)

Từ (1) và (2) \(\Rightarrow CH>AD\)

27 tháng 4 2017

mk mới học lớp 5 nên ko biết, mong bạn thông cảm, chúc bạn học giỏi nha

19 tháng 3 2017

Trên tia đối của tia MA , lấy D sao cho MA=MD

Xét 2 tg MAB và tg MDC , ta có : MA=MD ; MB=MC(vì M là trung điểm của BC) ; MAB=CMD(vì đối đỉnh)

->tg MAB =tg MDC (c.g.c) -> AB=CD (2 cạnh tương ứng) và MAB = CDM (2 góc tương ứng)

Ta có AB<AC(gt) -> CD<AC

Trong tg ACD , vì AC<CD ->CDM<CAM ( quan hệ giữa cạnh với góc đối diện) -> BAM<CAM

20 tháng 4 2020

help me!!!!!!!!!!!!!!

11 tháng 7 2019

A B C D E

Gọi AD cắt đường tròn (ABC) tại E khác A. Ta dễ có các cặp tam giác đồng dạng sau:

\(\Delta\)ABD ~ \(\Delta\)CED (g.g), \(\Delta\)ACD ~ \(\Delta\)BED (g.g) => AB.CD = AD.CE và AC.BD = AD.BE

Khi đó hệ thức cần chứng minh trở thành: AB.AD.CE + AC.AD.BE - AD2.BC = CD.DB.BC

<=> AD(AB.CE + AC.BE) - AD2.BC = CD.DB.BC

=> AD(BC.AE) - AD2.BC = CD.DB.BC (ĐL Ptolemy)

<=> AD.AE - AD2 = CD.DB <=> AD.DE = CD.DB (Luôn đúng với hệ thức lượng đường tròn)

Do vậy hệ thức cần chứng minh là đúng. Vậy AB2.CD + AC2.DB - AD2.BC = CD.DB.BC (đpcm).

24 tháng 3 2018

1/

A B C M

Ta có MA + MB > AB (bất đẳng thức tam giác)

MA + MC > AC (bất đẳng thức tam giác)

MB + MC > BC (bất đẳng thức tam giác)

=> 2 (MA + MB + MC) > AB + AC + BC

=> \(MA+MB+MC>\frac{AB+AC+BC}{2}\) (1)

Ta có MA + MB < AC + BC (bất đẳng thức tam giác)

MB + MC < AB + AC (bất đẳng thức tam giác)

MA + MC < AB + BC (bất đẳng thức tam giác)

=> 2 (MA + MB + MC) < 2 (AB + AC + BC)

=> MA + MB + MC < AB + AC + BC (2)

Từ (1) và (2) => \(\frac{1}{2}\left(AB+AC+BC\right)< AM+BM+CM< AB+AC+BC\)(đpcm)

25 tháng 3 2018

2/


A B C M I

Kéo dài tia MB cắt AC tại I.

\(\Delta AMI\)có: MA < IA + MI (bất đẳng thức tam giác) (*)

Cộng hai vế của (*) cho MB, ta có: MA + MB < IA + MI + MB

=> MA + MB < IA + IB (1)

\(\Delta BIC\)có: IB < IC + BC (bất đẳng thức tam giác) (**)

Cộng hai vế của (**) cho IA, ta có: IA + IB < IA + IC + BC

=> IA + IB < AC + BC (2)

Từ (1) và (2) => MA + MB < AC + BC (đpcm)