a)Tìm bậc của đa thức: 15x3 + x4
Tìm bậc của đa thức:2x2-3
Ai làm xong nhanh mik sẽ vote
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
a) Thu gọn và sắp xếp:
\(P\left(x\right)=2x^3-9x^2+5-4x^3+7x\)
\(P\left(x\right)=\left(2x^3-4x^3\right)-\left(9x^2+2x^2\right)+7x+5\)
\(P\left(x\right)=-2x^3-11x^2+7x+5\)
b) Thay x=1 vào đa thức P(x) ta được:
\(P\left(x\right)=\left(-1\right)^4-\left(-1\right)^3-\left(-1\right)-2=1\)
a-b=1 nên a=b+1
P(x)=x^2+ax+b
=x^2+x(b+1)+b
=(x+1)(x+b)
=>x=-1 là nghiệm của P(x)
Để chứng tỏ x=-1 là một nghiệm của đa thức p(x), ta cần chứng minh rằng p(-1) = 0.
Thay x = -1 vào đa thức p(x), ta được:
p(-1)=(-1)^2 + a(-1) + b = 1 - a + b
Vì a - b = 1, nên ta có thể viết lại a = b + 1. Thay a = b + 1 vào biểu thức trên, ta được:
p(-1) =1- (b + 1) + b = 0
Vậy x = -1 là một nghiệm của đa thức p(x).
Để chứng tỏ x = -1 là một nghiệm của p(x), ta chỉ cần thay x = -1 vào đa thức p(x) và kiểm tra xem có bằng 0 hay không. Ta có:
p(-1) = (-1)^2 + a(-1) + b
= 1 - a + b
= 1 - (a - b) - b
= 1 - 1 - b
= -b
Do đó, nếu p(-1) = 0 thì x = -1 là một nghiệm của p(x). Điều này tương đương với b = 0. Vậy để x = -1 là một nghiệm của p(x), ta cần có điều kiện b = 0.
a,
\(A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức là 3
Hệ số cao nhất ứng với x mũ lớn nhất là 1
a.
\(3x^7+x^4-3x^7+x^5+x+4=x^5+x^4+x+4\)
Đa thức có bậc 5
b.
Đa thức có bậc 0
\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức : \(3\)
Hệ số cao nhất ứng với hệ số của số mũ cao nhất : \(1\)
b, \(B\left(x\right)=A\left(x\right).\left(x-1\right)\\ =\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-10x-x+10\\ =x^4-x^3+x^2-11x+10\)
\(B\left(2\right)=2^4-2^3+2^2-11.2+10=0\)
`a,`
`15x^3+x^4`
Bậc của đa thức: `4`
`2x^2-3`
Bậc của đa thức: `2`.
Thanks