K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2023

Ta có S = \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\)

4S = \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\)

4S - S = ( \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\) ) - ( \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\))

3S = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}-\dfrac{2023}{4^{2023}}\)

Đặt A = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\)

4A = 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)

4A - A = ( 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)) - ( 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\))

3A = 4 - \(\dfrac{1}{4^{2022}}\)

A = ( 4 - \(\dfrac{1}{4^{2022}}\)) : 3 = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\)

⇒ 3S = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)

S = ( \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)) : 3 = \(\dfrac{4}{9}-\dfrac{1}{4^{2022}\cdot3^2}-\dfrac{1}{4^{2023}\cdot3}< \dfrac{4}{9}< \dfrac{1}{2}\)

Vậy S < \(\dfrac{1}{2}\)

16 tháng 4 2023

=> 4S = 1 + 2/4 + 3/4^2 +...+ 2023/4^2022

=> 4S-S = 1 + (2/4-1/4) + (3/4^2 - 2/4^2) +...+ (2023/4^2022 - 2022/4^2022) - 2023/4^2023

=> 3S = 1 + 1/4 + 1/4^2 +...+ 1/4^2022 - 2023/4^2023

=> 12S = 4 + 1 + 1/4 +... + 1/4^2021 - 2023/4^2022

=> 12S - 3S = 4 + (1-1) + (1/4-1/4) +... + (1/4^2021 - 1/4^2021)  - 1/4^2022 - 2023/4^2022 + 2023/4^2023

=> 9S = 4 -  1/4^2022 - 2023/4^2022 + 2023/4^2023

= 4- 2024/4^2022 + 2023/4^2023

Do 2024/4^2022 > 2024/4^2023 > 2023/4^2023 nên - 2024/4^2022 + 2023/4^2023 < 0

=> 9S < 4 < 9/2

=> S < 1/2 (đpcm)

30 tháng 8 2023

Cho S=1+3+3^2+....+3^2023

Chứng tỏ S chia hết cho 4

\(\dfrac{3}{4}B=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+\left(\dfrac{3}{4}\right)^3-....-\left(\dfrac{3}{4}\right)^{2024}+\left(\dfrac{3}{4}\right)^{2025}\)

=>\(\dfrac{7}{4}B=\left(\dfrac{3}{4}\right)^{2025}+1\)

=>\(B\cdot\dfrac{7}{4}=\dfrac{3^{2025}+4^{2025}}{4^{2025}}\)

=>\(B=\dfrac{3^{2025}+4^{2025}}{4^{2024}\cdot7}\)

11 tháng 5 2023

Ta có thể viết lại M dưới dạng:

M = (1/2³) + (2/3³ - 1/2³) + (3/4³ - 2/3³) + … + (2022/2023³ - 2021/2022³)

= (1/2³) + [(2/3³ - 1/2³) + (3/4³ - 2/3³)] + … + [(2022/2023³ - 2021/2022³) + (2023/2024³ - 2022/2023³)]

= (1/2³) + (1/3³ - 1/2³) + … + (1/2023³ - 1/2022³)

= 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³)

Ta sử dụng kết quả sau đây: Với mọi số nguyên dương n, ta có

1/n³ > 1/(n+1)³

Điều này có thể được chứng minh bằng cách sử dụng đạo hàm hoặc khai triển. Do đó,

1/2³ > 1/3³
1/3³ > 1/4³

1/2022³ > 1/2023³

Vậy ta có

M = 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³) < 1/2³ + 1/3³ + 1/4³ + … + 1/2023³

Để chứng minh rằng M không phải là một số tự nhiên, ta sẽ chứng minh rằng tổng các số mũ ba nghịch đảo từ 1 đến 2023 không phải là một số tự nhiên. Điều này có thể được chứng minh bằng phương pháp giả sử ngược lại và dẫn đến mâu thuẫn.

Giả sử tổng các số mũ ba nghịch đảo từ 1 đến 2023 là một số tự nhiên, ký hiệu là S. Ta có:

S = 1/1³ + 1/2³ + 1/3³ + … + 1/2023³

Với mọi số nguyên dương n, ta có:

1/n³ < 1/n(n-1)

Do đó,

1/1³ < 1/(1x2)
1/2³ < 1/(2x3)
1/3³ < 1/(3x4)
...

1/2023³ < 1/(2023x2024)

Tổng các số hạng bên phải có thể được viết lại dưới dạng:

1/(1x2) + 1/(2x3) + 1/(3x4) + … + 1/(2023x2024) = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + … + (1/2023 - 1/2024) = 1 - 1/2024 < 1

Vậy tổng các số mũ ba nghịch đảo từ 1 đến 2023 cũng nhỏ hơn 1. Điều này mâu thuẫn với giả sử ban đầu rằng tổng này là một số tự nhiên. Do đó, giá trị của M không phải là một số tự nhiên.

   
27 tháng 1

Đây là dạng toán nâng cao chuyên đề về so sánh phân số, cấu trúc thi chuyên, thi học sinh giỏi, thi violympic. Hôm nay olm sẽ hướng dẫn em cách giải dạng này như sau.

                Xét dãy số: 2; 3; 4;...; 2023

     Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1  = 1

      Số số hạng của dãy số trên là: (2023 - 2) : 1  + 1  = 2022

     Vì \(\dfrac{3}{2^2}\) = \(\dfrac{3}{4}\) < 1 ; \(\dfrac{8}{3^2}\) = \(\dfrac{3^2-1}{3^2}\) < 1;...; \(\dfrac{2023^2-1}{2023^2}\) < 1 

                 Vậy A là tổng của 2022 phân số mã mỗi phân số đều nhỏ hơn 1

                  ⇒ A < 1 x 2022 = 2022 (1) 

                  Mặt  khác ta có: 
               A =     \(\dfrac{3}{2^2}\) + \(\dfrac{8}{3^2}\) + \(\dfrac{15}{4^2}\) + \(\dfrac{2023^2-1}{2023^2}\)

               A =  1 - \(\dfrac{1}{2^2}\) + 1  - \(\dfrac{1}{3^2}\) + ... + 1 - \(\dfrac{1}{2023^2}\)

              A =  (1 + 1 + 1+ ...+ 1) - (\(\dfrac{1}{2^2}\)  + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\))

              A = 2022 - (\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + .... + \(\dfrac{1}{2023^2}\))

             Đặt B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + .... + \(\dfrac{1}{2023^2}\)

                \(\dfrac{1}{2^2}\)    < \(\dfrac{1}{1.2}\)  = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

                  \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)   =  \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

                   \(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)

                    ............................

                 \(\dfrac{1}{2023^2}\)\(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

                Cộng vế với vế ta có:

             B <  1 - \(\dfrac{1}{2023}\)

      ⇒ - B > -1 + \(\dfrac{1}{2023}\)

⇒ A = 2022 - B > 2022 - 1 + \(\dfrac{1}{2023}\) = 2021 + \(\dfrac{1}{2023}\) ⇒ A > 2021 (2)

Kết hợp (1) và (2) ta có: 

            2021 < A < 2022

Vậy A không phải là số tự nhiên (đpcm)

 

         

              

21 tháng 4

A = 3. \(\dfrac{1}{1.2}\) - 5. \(\dfrac{1}{2.3}\) + 7. \(\dfrac{1}{3.4}\) + ... + 15. \(\dfrac{1}{7.8}\) -17 . \(\dfrac{1}{8.9}\)

22 tháng 3 2023

Có : `1/2^2<1/(1*2)`

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\\ ...\\ \dfrac{1}{2023^2}< \dfrac{1}{2022\cdot2023} \)

nên \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2023^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\\ =1-\dfrac{1}{2023}=\dfrac{2022}{2023}< 1\\ \Rightarrow B< 1\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 6 2023

Yêu cầu đề bài là gì vậy bạn?

24 tháng 4 2022

4S=1+24+342+....+2014420134S=1+24+342+....+201442013

4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)

3S=1+(24−14)+(342−242)+......+(201442013−201342013)−2014420143S=1+(24−14)+(342−242)+......+(201442013−201342013)−201442014

3S=1+14+142+143+.....+142013−2014420143S=1+14+142+143+.....+142013−201442014

đặt A=1+14+142+143+....+142023A=1+14+142+143+....+142023

4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)

3A=4−1420233A=4−142023

A=43−13.42023A=43−13.42023

⇒3S=43−13.42023−201442024⇒3S=43−13.42023−201442024

⇒S=49−19.42023−20143.42024⇒S=49−19.42023−20143.42024

do 49<48=1249<48=12

⇒S=49−19.42023−20143.42024<48=12(đpcm)