Các bạn giúp em giải bài này :Tìm 2 số x và y thỏa điều kiện x^2+2(y^2+1)=2x(y+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(1=\left(x.\sqrt{1-y^2}+y.\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left(1-y^2+1-x^2\right)\)
\(\Rightarrow\left(x^2+y^2\right)\left(2-x^2-y^2\right)\ge1\Leftrightarrow\left(x^2+y^2\right)-2\left(x^2+y^2\right)+1\le0\Leftrightarrow\left(x^2+y^2-1\right)^2\le0\)
\(\Rightarrow\left(x^2+y^2-1\right)^2=0\)\(\Leftrightarrow x^2+y^2=1\)
Do \(2x^2-1\) luôn lẻ \(\Rightarrow y^3\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k-1\) với \(k>1\)
\(2x^2-1=\left(2k-1\right)^3=8k^3-12k^2+6k-1\)
\(\Rightarrow x^2=4k^3-6k^2+3k=k\left(4k^2-6k+3\right)\)
- Nếu \(k⋮3\Rightarrow x^2⋮3\Rightarrow x⋮3\)
- Nếu \(k⋮̸3\), gọi \(d=ƯC\left(4k^2-6k+3;k\right)\) với \(d\ne3\)
\(\Rightarrow4k^2-6k+3-k\left(4k-6\right)⋮d\)
\(\Rightarrow3⋮d\Rightarrow d=1\)
\(\Rightarrow4k^2-6k+3\) và \(k\) nguyên tố cùng nhau
Mà \(k\left(4k^2-6k+3\right)=x^2\Rightarrow\left\{{}\begin{matrix}k^2=m^2\\4k^2-6k+3=n^2\end{matrix}\right.\)
Xét \(4k^2-6k+3=n^2\Rightarrow16k^2-24k+12=\left(2n\right)^2\)
\(\Rightarrow\left(4k-3\right)^2+3=\left(2n\right)^2\)
\(\Rightarrow\left(2n-4k+3\right)\left(2n+4k-3\right)=3\)
Giải pt ước số cơ bản này ta được nghiệm nguyên dương duy nhất \(k=1\) (không thỏa mãn \(k>1\))
Vậy \(x⋮3\)
Trả lời:
Áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có:
(3+1)(3x2+y2)≥(3x+y)2
⇒4(3x2+y2)≥(3x+y)2⇒4(3x2+y2)≥(3x+y)2
⇒4(3x2+y2)≥(3x+y)2=12=1⇒4(3x2+y2)≥(3x+y)2=12=1
⇒M=3x2+y2≥14⇒M=3x2+y2≥14
Đẳng thức xảy ra khi x=y=14
Ta có: x + y = 1 => y = 1 - x
Khi đó: P = \(x^3+y^3+2x^2y^2=\left(x+y\right)^3-3xy\left(x+y\right)+2\left(xy\right)^2\)
\(=2\left(xy\right)^2-3xy+1=2\left[\left(xy\right)^2-2.xy.\frac{3}{4}+\frac{9}{16}\right]-\frac{1}{8}\)
\(=2\left(xy-\frac{3}{4}\right)^2-\frac{1}{8}\)
\(=2\left[x\left(1-x\right)-\frac{3}{4}\right]^2-\frac{1}{8}\)
\(=2\left[-x^2+x-\frac{3}{4}\right]^2-\frac{1}{8}\)
\(=2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\right]^2-\frac{1}{8}\ge\frac{3}{8}\)
Dấu "=" xảy ra <=> x = y =1/2
Ta có: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)
nên \(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)
mà 2x+y-z=0
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}=\dfrac{2x+y-z-2+1+3}{4+3-5}=\dfrac{2}{2}=1\)
Do đó: x=3; y=2; z=8
Câu 1:
(2x + 1) + (2x + 2) + ... + (2x + 2015) = 0
=> 2x + 1 + 2x + 2 + ... + 2x + 2015 = 0
=> 2015.2x + (1 + 2 + ... + 2015) = 0
=> 4030x + (2015 + 1).2015:2 = 0
=> 4030x + 2031120 = 0
=> x = -504
Câu 2:
x - y = 8; y - z = 10; x + z = 12
=> (x - y) + (y - z) = 8 + 10 = 18
=> x - z = 18
=> x = (12 + 18) : 2 = 15
=> z = 15 - 18 = -3
=> y = 15 - 8 = 7
=> x + y + z = 15 + 7 + (-3) = 19
mày ngu vcl