Chứng Minh rằng x(x+1)+(x+1) vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.
Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn
Bài làm:
Ta có: \(x^2-x+1=0\)
\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)(vô lý)
=> không tồn tại x thỏa mãn
=> Đa thức vô nghiệm
-x^2 và x không thể là 2 số đối nhau(chẳng hạn -5^2 và 5) vậy lời giải của bạn sai
deo biet
ma may hoc lop 9 roi thi co day roi chu s ngu vai lon ra
bài này tôi dùng cách viết thành bình phương như sau:
Phương trình tương đương:
\(4x+2-2\left(x+2\right)\sqrt{x+1}=0\)
\(\Leftrightarrow x^2+4x+4-2\left(x+2\right)\sqrt{x+1}+x+1-x^2-x-3=0\)
\(\Leftrightarrow\left(\left(x+2\right)-\left(x+1\right)\right)^2=x^2+x+3\)
\(\Leftrightarrow x^2+x+3=1\)
\(\Leftrightarrow x^2+x+2=0\)
Đến đây thì đã quá đơn giản, có lẽ bạn sẽ giải được.
Ta thấy \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
Vậy nên phương trình vô nghiệm (ĐPCM)
Giả sử đa thức R(x) tồn tại một nghiệm n nào đó, n là số thực
Khi đó: R(x) = x^8 -x^5 + x^2 -x +1 = 0
(x^8 + x^2 ) -( x^5 + x) = -1 (**)
Vì (x^8 + x^2 ) > ( x^5 + x) nên (x^8 + x^2 ) -( x^5 + x) luôn lớn hơn 0 trái với (**)
Vậy đa thức R(x) vô nghiệm
Ta có: x^8-x^5+x^2-x+1 = (x+x^2+x^5)-x^5+x^2-x+1 = (x^5-x^5)+(x^2+x^2)+(x-x)+1 = 0+2x^2+0+1 = 2x^2+1
Vì 2x^2 \(\ge\) 0 nên 2x^2+1 \(\ge\) 1
Vậy R(x) không có nghiệm
Chúc bạn hoc tốt! k mik nha
GHÉP THÀNH 2 ĐA THỨC BẬC HAI
(X^4 + 2*X^3/2+x^2/4)+(X^2/4+2*X/2+1)+X^2/2
(X^2+x/2)^2+(X/2+1)^2+X^2/2
ĐÚNG THÌ K
- Ta có: \(x^4+x^3+x^2+x+1=0\)( * )
- Nhân \(x-1\)vào cả hai vế của phương trình ( * ), ta có:
\(\left(x^4+x^3+x^2+x+1\right).\left(x-1\right)=0.\left(x-1\right)\)
\(\Leftrightarrow x^5+x^4+x^3+x^2+x-x^4-x^3-x^2-x-1=0.\left(x-1\right)\)
\(\Leftrightarrow x^5+\left(x^4-x^4\right)+\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(x-x\right)-1=0.\left(x-1\right)\)
\(\Leftrightarrow\frac{x^5-1}{x-1}=0\)( ** )
\(\Leftrightarrow x^5-1=0\)
\(\Leftrightarrow x^5=1\)
\(\Leftrightarrow x=1\)
- Thay \(x=1\)vào phương trình ( ** ), ta có:
\(\frac{1^5-1}{1-1}=\frac{1-1}{0}\)( vô nghiệm )
Vậy phương trình \(x^4+x^3+x^2+x+1=0\)vô nghiệm ( ĐPCM )
ta có A=x(x+1)+(x+1)=(x+1)2+1 vì(x+1)2 >hoac =0 nen (x+1)2+1>0
hay A=(x+1)2+1>0
suy ra đa thức A vô nghiệm
Có nghiệm tại x = 0 mà