cho tam giác abc có ab =4cm bc=5cm ac=7cm .sắp xếp các góc abc theo thứ tự từ lớn đến bé B.cho đoạn thẳng mn có độ dài bằng 6cm vẽ đường trung trực d của đoạn thẳng mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có góc đối diện với cạnh nhỏ nhất là góc lớn nhất
mà \(AB< AC< BC\left(4< 6< 7\right)\)
\(\Rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)
Sắp xếp : \(\widehat{C},\widehat{B},\widehat{A}\)
b, Cách vẽ đường trung trực
Bước 1 Xác định trung điểm của MN
Giả sử : I là trung điểm MN
Bước 2 Vẽ \(IM=\dfrac{1}{2}MN=\dfrac{1}{2}.5=2,5\left(cm\right)\)
Bước 3 vẽ đường thẳng vuông góc với MN đi qua I
Hình vẽ :
Đáp án là A
Ta có: AB = 4cm; MN = 5cm; EF = 3cm; PQ = 8cm; IK = 7cm
Do đó, các đoạn thẳng được sắp xếp theo thứ tự độ dài tăng dần là: EF, AB, MN, IK, PQ
Cậu tự vẽ hình
a. Xét tg ABC có:
BC2= 102=100
AB2 + AC2= 62 + 82 = 36 + 64 = 100
=> BC2=AB2 + AC2
=> Tam giác ABC vuông tại A (định lý Py-ta-go đảo)
b. Xét △BKM và △CKD vuông tại K có:
MK chung
BK=KC (K là trung điểm BC)
=> △BKM = △CKD (2cgv)
=> BM=CM (2 cạnh tương ứng)
Xét △DMC vuông tại D và △AMB vuông tại A có:
MB=CM (cmt)
góc BMC chung
=> △DMC = △AMB (ch-gn)
=> AB=DC (2 cạnh tương ứng)
Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)
Do đó: MN//BC(Định lí Ta lét đảo)
Xét ΔABC có MN//BC(cmt)
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AB}\)(Hệ quả của Định lí Ta lét)
\(\Leftrightarrow MN=\dfrac{1}{4}\cdot8=2\left(cm\right)\)
a: AD>AB>CD>BC
b: Độ dài đường gấp khúc là 7+5+6+12=30cm
c: Độ dài đường gấp khúc ABCD=30cm
AD=12cm
=>Độ dài đường gấp khúc ABCD lớn hơn AD
Sắp xếp các gốc theo thứ tự từ lớn đến bé:
Ta có: \(AC>BC>AB\)
\(\Rightarrow\widehat{B}>\widehat{A}>\widehat{C}\)