K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

mình chịu bó tay

24 tháng 3 2017

sao lại thế -.-

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

2 tháng 10 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{4}{2a+b+c}=\frac{4}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{1}{a+c}\)

\(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{4}{2b+c+a}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\)\(;\frac{4}{2c+a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{4}\left(4a+4b+4c\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=VP\)

Khi \(a=b=c\)

NV
5 tháng 4 2019

Cho \(a=b=c\) ta có:

\(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\ge1+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\Leftrightarrow1\ge2\)

Bất đẳng thức sai