K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2023

1. Vì (d) cắt trục hoành tại điểm có hoành độ = 2 nên điểm đó có tọa độ (2;0) => x = 2; y = 0

Thay x = 2; y = 0 vào (d) ta có: 0 = (2 - m).2 + m + 1

<=> 4 - 2m + m + 1 = 0 <=> 5 - m = 0 <=> m = 5 

Vậy m = 5 thì thỏa mãn 

2. \(\left\{{}\begin{matrix}3x+2y=11\\x-2y=1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}4x=12\\x-2y=1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=3\\3-2y=1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Vậy hệ phương trình có nghiệm (x;y)=(3;1)

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)

a: Thay x=2 vào (P),ta được:

y=2^2/2=2

2: Thay x=2 và y=2 vào (d), ta được:

m-1+2=2

=>m-1=0

=>m=1

 

PTHHĐGĐ là:

x^2-2x-m^2+2m=0

Δ=(-2)^2-4(-m^2+2m)

=4+4m^2+8m=(2m+2)^2

Để phương trình có hai nghiệm phân biệt thì 2m+2<>0

=>m<>-1

x1^2+2x2=3m

=>x1^2+x2(x1+x2)=3m

=>x1^2+x2^2+x1x2=3m

=>(x1+x2)^2-x1x2=3m

=>2^2-(-m^2+2m)=3m

=>4+m^2-2m-3m=0

=>m^2-5m+4=0

=>m=1 hoặc m=4

10 tháng 5 2023

sao 2x2 lại bằng x2(x1+x2) vậy ạ

22 tháng 4 2021

Phương trình hoành độ giao điểm là :

\(-x^2=mx+2\)

\(\Leftrightarrow x^2+mx+2=0\)

Lại có : \(\Delta=m^2-8>0\)

Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=2\end{matrix}\right.\)

\(\left(x1+1\right)\left(x2+1\right)=0\)

\(\Leftrightarrow x1x2+x1+x1+1=0\)

\(\Leftrightarrow2-m+1=0\Leftrightarrow m=3\)

 

−x2=mx+2

⇔x2+mx+2=0

chúng ta sẽ lại có : Δ=m2−8>0

Theo định lí Vi - et ta có :

{x1+x2=−mx1x2=2

\(\trái(x1+1\phải)\trái(x2+1\phải)=0\)

⇔x1x2+x1+x1+1=0

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

a: PTHĐGĐ là:

x^2-2x-|m|-1=0

a*c=-|m|-1<0

=>(d)luôn cắt (P) tại hai điểm phân biệt

b: Bạn bổ sung lại đề đi bạn