Giải các bất phương trình sau
a) 6x2-8x+2x(2-3x)<-4 b) 2(3x+4x2)-8x(x+3)>5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(6x^2-8x+2x\left(2-3x\right)< -4\)
\(\Leftrightarrow6x^2-8x+4x-6x^2< -4\)
\(\Leftrightarrow-4x< -4\)
\(\Leftrightarrow-4x.\dfrac{-1}{4}>-4\cdot\dfrac{-1}{4}\)
\(\Leftrightarrow x>1\)
Vậy bất phương trình có nghiệm là \(S=\left\{xIx>1\right\}\)
b)\(2\left(3x+4x^2\right)-8x\left(x+3\right)>5\)
\(\Leftrightarrow6x+8x^2-8x^2-24x>5\)
\(\Leftrightarrow-18x>5\)
\(\Leftrightarrow-18x\cdot\dfrac{-1}{18}< 5\cdot\dfrac{-1}{18}\)
\(\Leftrightarrow x< -\dfrac{5}{18}\)
Vậy bất phương trình có nghiệm là \(S=\left\{xIx< -\dfrac{5}{18}\right\}\)
a) x - 5 > 3
⇔ x > 3 + 5 (chuyển -5 từ vế trái sang vế phải và đổi dấu thành 5)
⇔ x > 8
Vậy nghiệm của bất phương trình là x > 8.
b) x - 2x < -2x + 4 ⇔ x - 2x + 2x < 4 ⇔ x < 4
Vậy nghiệm của bất phương trình là x < 4.
c) -3x > -4x + 2 ⇔ -3x + 4x > 2 ⇔ x > 2
Vậy nghiệm của bất phương trình là x > 2.
d) 8x + 2 < 7x - 1 ⇔ 8x - 7x < -1 - 2 ⇔ x < -3
Vậy nghiệm của bất phương trình là x < -3.
a, \(x^2-8x+16=81\Leftrightarrow x^2-8x-65=0\)
\(\Leftrightarrow\left(x-13\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=13\)
Vậy tập nghiệm của pt là S = { -5 ; 13 }
b, \(\frac{2x+2}{5}+\frac{3}{10}< \frac{3x-2}{4}\)
\(\Leftrightarrow\frac{8x+8+6}{20}< \frac{15x-10}{20}\Leftrightarrow8x+14< 15x-10\)
\(\Leftrightarrow-7x< -24\Leftrightarrow x>\frac{24}{7}\)
Vậy tập nghiệm của BFT là S = { x | x > 24/7 }
c, \(\frac{2}{x-2}+\frac{3}{x-3}=\frac{3x-20}{x^2}\)ĐK : \(x\ne0;2;3\)
\(\Leftrightarrow\frac{2x^2\left(x-3\right)+3x^2\left(x-2\right)}{x^2\left(x-2\right)\left(x-3\right)}=\frac{\left(3x-20\right)\left(x-2\right)\left(x-3\right)}{x^2\left(x-2\right)\left(x-3\right)}\)
tự khử mẫu, làm tiếp nhé, mình bị lười :>
d, \(3\left(x-11\right)-2\left(x+11\right)=1964\)
\(\Leftrightarrow3x-33-2x-22=1964\Leftrightarrow x-55=1964\Leftrightarrow x=2019\)
Vâỵ tập nghiệm của pt là S = { 2019 }
e, \(\left|2x-3\right|=5\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=5\Leftrightarrow x=4\)( tm )
Với \(x< \frac{3}{2}\)pt có dạng : \(-2x+3=5\Leftrightarrow-2x=2\Leftrightarrow x=-1\)( tm )
Vậy tập nghiệm của pt là S = { -1; 4 }
g, \(\frac{-2x+14}{x-5}+\frac{5x-3}{2x}=\frac{8}{x\left(x-5\right)}\)ĐK : \(x\ne0;5\)
\(\Leftrightarrow\frac{2x\left(-2x+14\right)+\left(5x-3\right)\left(x-5\right)}{2x\left(x-5\right)}=\frac{16}{2x\left(x-5\right)}\)
Tự khử mẫu tự giải nhá :>
a: Ta có: \(3x+5\le4x-9\)
\(\Leftrightarrow-x\le-14\)
\(\Leftrightarrow x\ge14\)
b: Ta có: \(6-2x< 6-x\)
\(\Leftrightarrow-x< 0\)
hay x>0
c: Ta có: \(7\left(x-1\right)+5>-3x\)
\(\Leftrightarrow7x-7+5+3x>0\)
\(\Leftrightarrow10x>2\)
hay \(x>\dfrac{1}{5}\)
a:=>6x^2-8x+4x-6x^2<-4
=>-4x<-4
=>x>1
b: =>6x+8x^2-8x^2-24x>5
=>-18x>5
=>x<-5/18