TÌm GTNN của
E=\(\frac{3x^2-2x+3}{x^2+1}\)
G=\(\frac{x^6+512}{x^2+8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
\(a)=\frac{-2\left(x+3\right)}{x\left(1-3x\right)}.\frac{1-3x}{x\left(x+3\right)}\)
\(=\frac{-2}{x^2}\)
\(b)=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}\)
\(=x\left(x-3\right)\)
\(c)=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)
\(=\frac{\left(x+3\right).x}{x\left(x-1\right)\left(x+1\right)}-\frac{1.\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x\left(x+3\right)-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+3}{x+1}\)
# Sắp ik ngủ nên làm vậy hoi, ko chắc phần kq câu b và c đâu nha
Câu 1:
\(F=\frac{\frac{x^3-x}{x+1}+\frac{2x-2}{1+\frac{x}{2}}}{\frac{x^3-3x^2}{x-3}-\frac{2x^2+8}{x+2}}\left(ĐKXĐ:x\ne3;-2;-1\right)\)
\(F=\frac{\frac{x\left(x-1\right)\left(x+1\right)}{x+1}+\frac{2x-2}{1+\frac{x}{2}}}{\frac{x^2\left(x-3\right)}{x-3}-\frac{2x^2+8}{x+2}}\)
\(F=\frac{\frac{\left(x^2-x\right)\left(1+\frac{x}{2}\right)+2x-2}{1+\frac{x}{2}}}{\frac{x^2\left(x+2\right)-2x^2-8}{x+2}}\)
\(F=\frac{\frac{x^2+\frac{x^3}{2}-x-\frac{x^2}{2}+2x-2}{1+\frac{x}{2}}}{\frac{x^3-8}{x+2}}\)
\(F=\frac{\frac{x^2}{2}+\frac{x^3}{2}+x-2}{1+\frac{x}{2}}.\frac{x+2}{x^3-8}\)
Câu 2:
\(G=\frac{\frac{x^4+1}{x^3-1}-x}{\frac{x}{x^2+x+1}-\frac{2}{x-1}}\left(ĐKXĐ:x\ne1\right)\)
\(G=\frac{\frac{x^4+1-x\left(x^3-1\right)}{x^3-1}}{\frac{x\left(x-1\right)-2\left(x^2+x+1\right)}{x^3-1}}\)
\(G=\frac{x+1}{x^3-1}:\frac{x^2-x-2x^2-2x-2}{x^3+1}\)
\(G=\frac{x+1}{-x^2-3x-2}\)
\(G=\frac{x+1}{-\left(x+2\right)\left(x+1\right)}\)
\(G=-\frac{1}{x+2}\)Tại x=2017 ta đc:\(G=-\frac{1}{2+2017}=-\frac{1}{2019}\)
\(D=\frac{\left(x^2\right)^3+8^3}{x^2+8}=\frac{\left(x^2+8\right)\left(x^4-8x^2+64\right)}{x^2+8}\)
\(=x^4-8x^2+64=\left(x^2-4\right)^2+48\ge48\left(\forall x\right)\)
Dấu "=" xảy ra khi \(x^2-4=0\Leftrightarrow x=\pm2\)
Vậy \(D_{min}=48\Leftrightarrow x=\pm2\)
a) Qui đồng rồi khử mẫu ta được:
3(3x+2)-(3x+1)=2x.6+5.2
<=> 9x+6-3x-1 = 12x+10
<=> 9x-3x-12x = 10-6+1
<=> -6x = 5
<=> x = -5/6
Vậy ....
b) ĐKXĐ: \(x\ne\pm2\)
Qui đồng rồi khử mẫu ta được:
(x+1)(x+2)+(x-1)(x-2) = 2(x2+2)
<=> x2+3x+2+x2-3x+2 = 2x2+4
<=> x2+x2-2x2+3x-3x = 4-2-2
<=> 0x = 0
<=> x vô số nghiệm
Vậy x vô số nghiệm với x khác 2 và x khác -2
c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)
Vậy ......
d) (x+1)2-4(x2-2x+1) = 0
<=> x2+2x+1-4x2+8x-4 = 0
<=> -3x2+10x-3 = 0
giải phương trình
a, x( x - 1) = x ( x + 2)
<=> x2 - x = x2 + 2x
<=> x2 - x - x2 - 2x = 0
<=> -3x = 0
<=> x = 0
b, tương tự câu a
c,\(\Leftrightarrow\frac{3x-3}{4}=2-\frac{x-2}{8}\)
\(\Leftrightarrow\frac{\left(3x-3\right)2}{8}=\frac{16}{8}-\frac{x-2}{8}\)
\(\Leftrightarrow\frac{6x-6}{8}=\frac{16}{8}-\frac{x-2}{8}\)
=> 6x - 6 = 16 - x + 2
<=> 6x + x = 16 + 2 + 6
<=> 7x = 24
<=> x=\(\frac{24}{7}\)
Các câu còn lại làm tương tự