K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

\(C=\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times...\times\frac{9999}{10000}\)(1)

Ta có :      \(\frac{1}{2}< \frac{2}{3}\)

                 \(\frac{3}{4}< \frac{4}{5}\)  

                  \(\frac{5}{6}< \frac{6}{7}\)

                  ................

                  \(\frac{9999}{10000}< \frac{10000}{10001}\)

\(\Rightarrow C< \frac{2}{3}\times\frac{4}{5}\times\frac{6}{7}\times...\times\frac{10000}{10001}\)(2)

 Từ (1) và (2) \(\Rightarrow C^2< \frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times\frac{5}{6}\times\frac{6}{7}\times...\times\frac{9999}{10000}\times\frac{10000}{10001}\)

                   \(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}=\left(\frac{1}{100}\right)^2\)

                    \(\Rightarrow C< \frac{1}{100}\)(đpcm)

23 tháng 4 2017

éo hỉu

24 tháng 4 2017

Giải:

\(C=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{9999}{10000}\)

Đặt \(B=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{10000}{10001}\)

Do \(\dfrac{1}{2}< \dfrac{2}{3};\dfrac{3}{4}< \dfrac{4}{5};...;\dfrac{9999}{10000}< \dfrac{10000}{10001}\)

Nên \(C< B\)\(\left\{{}\begin{matrix}C>0\\B>0\end{matrix}\right.\)

\(\Rightarrow C^2< C.B=\left(\dfrac{1}{2}.\dfrac{3}{4}...\dfrac{9999}{10000}\right)\)\(\left(\dfrac{2}{3}.\dfrac{4}{5}...\dfrac{10000}{10001}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{9999}{10000}.\dfrac{10000}{10001}\)

\(=\dfrac{1.2.3.4.5.6...9999.10000}{2.3.4.5.6.7....10000.10001}\)

\(=\dfrac{1}{10001}< \dfrac{1}{10000}=\dfrac{1}{100}.\dfrac{1}{100}=\left(\dfrac{1}{100}\right)^2\)

\(\Rightarrow C^2< \left(\dfrac{1}{100}\right)^2\Leftrightarrow C< \dfrac{1}{100}\)

Vậy \(C=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{9999}{10000}< \dfrac{1}{100}\) (Đpcm)

25 tháng 5 2015

Gọi D = \(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\)

Số thừa số của C và D bằng nhau (đều bằng 100)

Ap dụng tính chất: a/b < 1 => a/b < a+m/b + m (b, m > 0)

Ta có:

\(\frac{1}{2}<\frac{2}{3}\)

\(\frac{3}{4}<\frac{4}{5}\)

.........

\(\frac{199}{200}<\frac{200}{201}\)

=> C < D 

C.D = \(=\left(\frac{1}{2}.\frac{3}{4}......\frac{199}{200}\right)\left(\frac{2}{3}.\frac{4}{5}....\frac{200}{201}\right)=\frac{1}{201}\)

Vì C < D => C.C < C.D => C2 < 1/201 (ĐPCM)

 

 

28 tháng 9 2019

ae giúp mình câu này với ạ

1 k cho bạn nào nhanh nhất

14 tháng 9 2017

Ta dễ dàng nhận thấy: \(\frac{1}{2\times3}=\frac{3-2}{2\times3}=\frac{3}{2\times3}-\frac{2}{2\times3}=\frac{1}{2}-\frac{1}{3}\).

Vậy, ta có thể tính dãy này như sau:

\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{19\times20}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)

Ta gạch đi những phân số giống nhau và bằng nhau, Ta còn \(\frac{1}{2}\)và \(\frac{1}{20}\). Vậy từ đó ta có:

\(=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)

14 tháng 9 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{18.19}+\)\(\frac{1}{19.20}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}=\frac{10-1}{20}=\frac{9}{20}\)

AH
Akai Haruma
Giáo viên
27 tháng 8 2024

Lời giải:

$A=\frac{1.3.5....2011}{2.4.6....2012}$
$A^2=\frac{1.3}{2^2}.\frac{3.5}{4^2}.\frac{5.7}{6^2}....\frac{2009.2011}{2010^2}.\frac{2011}{2012^2}$

$=\frac{3}{4}.\frac{15}{16}.\frac{35}{36}....\frac{4040099}{4040100}.\frac{2011}{2012^2}$

$< 1.1.1.....1.\frac{2011}{2012^2}=\frac{2011}{2012^2}$

$<\frac{2011}{2012^2-1}=\frac{2011}{2011.2013}=\frac{1}{2013}$

Ta có đpcm.