cho I nằm bên ngoài đt (O) . Từ I vẽ tiếp tuyến IA,IB (A,B là tiếp điểm) gọi C là điểm trên cung lớn AB sao cho IC nằm giữa 2 tia IA và IO. Tia IC cắt (O) tại E (E≠C). Gọi M là giao điểm của IO và AB. Chứng minh: MB\(\sqrt{IC}\)=MC\(\sqrt{IE}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
IA = IB (tính chất hai tiếp tuyến cắt nhau)
⇒ I nằm trên đường trung trực của AB (1)
OA = OB (bán kính)
⇒ O nằm trên đường trung trực của AB (2)
Từ (1) và (2) ⇒ OI là đường trung trực của AB
Mà H là giao điểm của AB và OI
⇒ H là trung điểm của AB
⇒ AH = AB : 2 = 24 : 2 = 12 (cm)
Do OI là đường trung trực của AB (cmt)
⇒ AH ⊥ OI
⇒ AH ⊥ HI
∆AHI vuông tại H
⇒ AI² = AH² + IH² (Pytago)
⇒ IH² = AI² - AH²
= 20² - 12²
= 256
⇒ IH = 16 (cm)
∆OAI vuông tại A có AH là đường cao
⇒ AH² = IH.OH
⇒ OH = AH² : IH
= 12² : 16
= 9 (cm)
b) Bán kính của (O) là đoạn OA
Ta có:
OI = OH + IH = 9 + 16 = 25 (cm)
∆OAI vuông tại A
⇒ OI² = IA² + OA² (Pytago)
OA² = OI² - IA²
= 25² - 20²
= 225
⇒ OA = 15 (cm)
Vậy bán kính OA = 15 cm
Để giải bài toán này, chúng ta có thể sử dụng các định lý về tiếp tuyến và đường tròn. Dưới đây là cách giải từng phần của bài toán:
a) Để tính độ dài AH, IH và OH, chúng ta cần sử dụng định lý về tiếp tuyến và đường tròn.
Theo định lý tiếp tuyến, ta có:
AH^2 = AI * AB
AH^2 = 20cm * 24cm
AH^2 = 480cm^2
AH = √480cm ≈ 21.91cm
Theo định lý tiếp tuyến, ta cũng có:
IH^2 = IB * AB
IH^2 = 20cm * 24cm
IH^2 = 480cm^2
IH = √480cm ≈ 21.91cm
Để tính OH, chúng ta cần sử dụng định lý về trung điểm. Vì O là trung điểm của đoạn thẳng IH, nên ta có:
OH = 1/2 * IH
OH = 1/2 * 21.91cm
OH ≈ 10.96cm
Vậy, độ dài AH là khoảng 21.91cm, độ dài IH là khoảng 21.91cm và độ dài OH là khoảng 10.96cm.
b) Để tính bán kính (o), chúng ta có thể sử dụng định lý về đường tròn ngoại tiếp.
Theo định lý đường tròn ngoại tiếp, ta có:
R = AI = 20cm
Vậy, bán kính (o) là 20cm.
a: Xéttứ giác OAIB có
góc OAI+góc OBI=180 độ
=>OAIB là tứ giác nội tiếp đường tròn đường kính OI(1)
ΔOHI vuông tại H
nên H nằm trên đường tròn đường kính OI(2)
Từ (1), (2) suy ra O,A,I,B,H cùng nằm trên 1 đường tròn
b: Xet (O) có
IA,IB là tiếp tuyến
nên IA=IB
mà OA=OB
nên OI là trung trực của AB
=>OI vuông góc AB tại P
=>OP*OI=OA^2=OD^2
Xet ΔCMO và ΔICO có
góc CMO=góc ICO
góc IOC chung
=>ΔCMO đồng dạng với ΔICO
=>CM/IC=MO/CO
=>CM/MO=IC/CO
=>CM*CO=MO*IC
=>CM^2*CO=MC*MO*IC
=>\(\dfrac{CM^2}{MO\cdot IC}=\dfrac{CM}{CO}\left(1\right)\)
ΔIEM đồng dạng với ΔCOM do góc IEM=góc MOC và góc EMI=góc OMC
=>IM/IE=CM/CO
=>\(\dfrac{IM\cdot IO}{MC^2}=\dfrac{IE}{IC}\)
mà MA^2=MI*MO
nên \(\dfrac{NA^2}{NC^2}=\dfrac{IE}{IC}\)
nên MB^2/MC^2=IE/IC
=>\(MB\cdot\sqrt{IC}=MC\cdot\sqrt{IE}\)