A=2006^2016+1/2006^2017+1 và B= 2006^2015+1/2006^2016+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(x-1\right)^{2006}\ge0\)
\(\left(2y-1\right)^{2016}\ge0\)
\(\left(x+2y-z\right)^{2017}\ge0\)
Mà \(\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}\)\(+|x+2y-z|^{2017}\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^{2006}=0\\\left(2x-1\right)^{2016}=0\\|x+2y-z|^{2017}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\2y-1=0\\x+2y-z=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\2y=1\\1-1-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy ...
Ta có :
\(\left(x-1\right)^{2006}\ge0\)
\(\left(2y-1\right)^{2016}\ge0\)
\(\left|x+2y-z\right|^{2017}\ge0\)
Mà \(\left(x-1\right)^{2006}+\left(2x-1\right)^{2016}+\left|x+2y-z\right|^{2017}=0\)
Suy ra : \(\hept{\begin{cases}\left(x-1\right)^{2006}=0\\\left(2x-1\right)^{2016}=0\\\left|x+2y-z\right|^{2017}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\2y-1=0\\x+2y-z=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\2y=1\\1+1-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy \(x=1\)\(;\)\(y=\frac{1}{2}\) và \(z=2\)
Chúc bạn học tốt ~
A=2016/2017+2017/2018
Do 2016/2017<1,2017/2018<1=> A<2 Hay A<B
A = \(\dfrac{2006^{2016}+1}{2006^{2017}+1}\)
A \(\times\) 2006 = \(\dfrac{(2006^{2016}+1)\times2006}{2006^{2017}+1}\)
A \(\times\) 2006 = \(\dfrac{2006^{2017}+2006}{2006^{2017}+1}\)
A \(\times\)2006 = 1 + \(\dfrac{2006}{2006^{2017}+1}\)
B = \(\dfrac{2006^{2015}+1}{2006^{2016}+1}\)
B \(\times\) 2006 = \(\dfrac{\left(2006^{2015}+1\right)\times2006}{2006^{2016}+1}\)
B \(\times\) 2006 = \(\dfrac{2006^{2016}+2006}{2006^{2016}}\)
B \(\times\) 2006 = 1 + \(\dfrac{2006}{2006^{2016}+1}\)
Vì \(\dfrac{2006}{2006^{2016}+1}\) > \(\dfrac{2006}{2006^{2017}+1}\)
=> B \(\times\) 2006 > A \(\times\) 2006
B > A