cho đa thức p(x)ax^3-2x^2+x-2(a là hằng số cho trước )a)Tìm bậc, hệ số cao nhất, hệ số tự do của p(x). b)tính giá trị của p(x) tại x=o. c) tìm hăengf số a thích hợp để p(x) có giá trị là 5 tại x=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Bậc của P(x) là 3
Hệ số tự do là a
b/ Với x=0 ta có
\(P\left(x\right)=a.0^3-2.0^2+0-2=-2\)
c/ Với x=1; P(x)=5 ta có:
\(P\left(x\right)=a.1^3-2.1^2+1-2=a-1+1-2=a-2=5\)
\(a-2=5\)
\(\Leftrightarrow a=7\)
a: Để P(x) có bậc là 3 thì a<>0
b: Để P(x) có bậc khác 3 thì a=0
c: P(1)=5
=>a-2+1-2=5
=>a-3=5
=>a=8
Cho đa thức \(P\left(x\right)=ax^3-2x^2+x-2\)(a là hằng số cho trước)
a. Tìm bậc, hệ số cao nhất, hệ số tự do của P(x).
- Bậc của đa thức P(x): 3
- Hệ số cao nhất: 2
- Hệ số tự do: 2
b. Tính giá trị của P(x) tại x = 0.
\(P\left(0\right)=a.0^3-2.0^2+0-2\)
\(=0-0+0-2\)
\(=-2\)
c. Tìm hằng số a để P(x) có giá trị bằng 5 tại x = 1.
Ta có: \(P\left(1\right)=a.1^3-2.1^2+1-2=5\)
\(\Leftrightarrow P\left(1\right)=a-2+1-2=5\)
\(\Rightarrow a=5+\left(2-1+2\right)\)
\(\Rightarrow a=8\)
hê lô taylor swift bạn cũng hâm mộ taylor à
me too
bậc là 4 nên các đơn thức có bậc 5 đều có giá trị =0 nên có 1/2+a =0 vậy a=-1/2
hệ số cao nhật là 5 của đơn thức có bậc 4 nên cộng hệ số này lại có -5+b=5 vậy b=0
hệ số tự do là -10 vậy c=10
bậc là 4 nên các đơn thức có bậc 5 đều có giá trị =0 nên có 1/2+a =0 vậy a=-1/2
hệ số cao nhật là 5 của đơn thức có bậc 4 nên cộng hệ số này lại có -5+b=5 vậy b=0
hệ số tự do là -10 vậy c=10