K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

5m+2 và 5n+2 cùng thêm một lượng như nhau là 2 mà m>n nên 5m>5n \(\Rightarrow\)5m+2>5n+2

23 tháng 4 2017

5m+2>5n+2

=>(m*5)+2>(n*5)+2

=> m*5>n*5

mà m>n nên 5m chắc chắn lớn hơn 5n

5 tháng 5 2018

Ta có:

m > n

\(\Rightarrow\) 5m > 5n

mà 1 > -4

\(\Rightarrow\) 5m + 1 > 5n - 4

Chúc bạn học tốt!!! ngoc do

5 tháng 5 2018

cảm ơn nhìu nh!

18 tháng 5 2020

a, Ta có m<n

⇔m+3 < n+3 (t/c)

b, Ta có m<n

⇔-3m>-3n(t/c)

c, Ta có m<n

⇔4m < 4n (t/c)

⇔4m-7 <4n-7 (t/c)

d, Ta có m<n

⇔-5m > -5n (t/c)

⇔-5m+10> -5n+10(t/c)

Hay 10-5m > 10-5n

chúc bạn học tốt !

17 tháng 8

Ta có m>n (giả thiết).

Chứng minh 5m−7>5n−7

Nhân cả hai vế của bất đẳng thức m>n với 5, ta được: 5m>5n

Cộng cả hai vế với -7, ta được: 5m−7>5n−7

Vậy, 5m−7>5n−7 được chứng minh.

Chứng minh 25−6m<25−6n

Nhân cả hai vế của bất đẳng thức m>n với -6. Khi nhân với một số âm, dấu của bất đẳng thức sẽ đổi chiều: −6m<−6n

Cộng cả hai vế với 25, ta được: 25+(−6m)<25+(−6n) 25−6m<25−6n

Vậy, 25−6m<25−6n được chứng minh.

3 tháng 4 2016

Để giải được bài toán sau thì ta liên tưởng đến một tính chất rất đặc biệt và hữu ích được phát biểu như sau:

\("\) Nếu  \(a,b\)  là hai số tự nhiên nguyên tố cùng nhau và  \(a.b\)  là một số chính phương thì \(a\)  và  \(b\) đều là các số chính phương  \("\)

Ta có:

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow\)  \(4m^2+m-5n^2-n=0\)

\(\Leftrightarrow\)  \(5m^2-5n^2+m-n=m^2\)

\(\Leftrightarrow\)  \(5\left(m^2-n^2\right)+\left(m-n\right)=m^2\)

\(\Leftrightarrow\)  \(\left(m-n\right)\left(5m+5n+1\right)=m^2\)  \(\left(\text{*}\right)\)

Gọi  \(d\)  là ước chung lớn nhất của  \(m-n\)  và   \(5m+5n+1\)  \(\left(\text{**}\right)\), khi đó:

\(m-n\)  chia hết cho  \(d\)   \(\Rightarrow\)  \(5\left(m-n\right)\)  chia hết cho  \(d\)

\(5m+5n+1\)  chia hết cho  \(d\)

nên   \(\left[\left(5m+5n+1\right)+5\left(m-n\right)\right]\)  chia hết cho  \(d\)

\(\Leftrightarrow\)   \(10m+1\)  chia hết cho  \(d\)   \(\left(1\right)\)

Mặt khác, từ  \(\left(\text{*}\right)\), với chú ý cách gọi ở \(\left(\text{**}\right)\), ta suy ra được:  \(m^2\)  chia hết cho  \(d^2\)

Do đó,  \(m\)  chia hết cho  \(d\)

  \(\Rightarrow\)   \(10m\)  chia hết cho  \(d\)   \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\), ta có  \(1\)  chia hết cho  \(d\)  \(\Rightarrow\)  \(d=1\)

Do đó,  \(m-n\)  và  \(5m+5n+1\)  là các số tự nhiên nguyên tố cùng nhau  

Kết hợp với  \(\left(\text{*}\right)\)  và điều mới chứng minh trên, thỏa mãn tất cả các điều kiện cần thiết ở tính chất nêu trên nên ta có đpcm

Vậy,   \(m-n\)  và  \(5m+5n+1\)  đều là các số chính phương.

11 tháng 3 2017

a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3

b vì a>3 => a+2>3+2  =>a+2>5

c  vì m>n =>m-n>n-n=>m-n>0

đ vì m-n=0 =>m-n+n>0+n=>m>n

e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)

  vì -4>-5 => m-4>m-5 (2)

từ (1) và (2) =>m-5<n-4

24 tháng 2 2020

thôi mình biết làm rồi, các bạn ko cần giải nữa đâu nhé!!!