K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:

\(MD\cdot MN=MH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:

\(ME\cdot MP=MH^2\left(2\right)\)

Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)

8 tháng 11 2023

`a)` Biết `MN=7cm;NP=25cm`

Xét \(\Delta MNP\) vuông tại `M`, đường cao `MK`

Ta có: \(NP^2=MN^2+MP^2\) (đl Pytago)

\(\Rightarrow25^2=7^2+MP^2\\ \Rightarrow MP^2=25^2-7^2=576\\ \Rightarrow MP=\sqrt{576}=24cm\)

Ta có: \(\dfrac{1}{MK^2}=\dfrac{1}{MN^2}+\dfrac{1}{MP^2}\left(htl\right)\)

\(\Rightarrow\dfrac{1}{MK^2}=\dfrac{1}{7^2}+\dfrac{1}{24^2}\\ \Rightarrow\dfrac{1}{MK^2}=\dfrac{625}{28224}\\ \Rightarrow MK^2=\dfrac{1\cdot28224}{625}\\ \Rightarrow MK=\sqrt{\dfrac{28224}{625}}\\ \Rightarrow MK=6,72cm\)

Ta có: \(MN^2=NK\cdot NP\left(htl\right)\)

\(\Rightarrow7^2=NK\cdot25\\ \Rightarrow NK=\dfrac{7^2}{25}=1,96cm\)

Vậy: \(MP=24cm;MK=6,72cm;NK=1,96cm\)

`b)` \(C/m:MD\cdot MN=ME\cdot MP\)

Xét \(\Delta KMN\) vuông tại `K` 

Ta có: \(MK^2=MD\cdot MN\left(htl\right)\left(1\right)\)

Xét \(\Delta KMP\) vuông tại `K`

Ta có: \(MK^2=ME\cdot MP\left(htl\right)\left(2\right)\)

Từ `(1)` và `(2)` \(\Rightarrow MK^2=MK^2\)

\(\Rightarrow MD\cdot MN=ME\cdot MP\left(=MK^2\right)\)

(Câu `c)` tớ chịu :v).

8 tháng 11 2023

không sao đâu bn ạ:D

a: Xét ΔHNM vuông tại H và ΔMNP vuôg tại M có

góc N chung

=>ΔHNM đồng dạng với ΔMNP

b: NP=căn 3^2+4^2=5cm

MH=3*4/5=2,4cm

NH=3^2/5=1,8cm

c; Đề bài yêu cầu gì?

23 tháng 11 2023

a: Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot PH=MH^2\left(1\right)\)

Xét ΔNHM vuông tại H có HE là đường cao

nên \(ME\cdot MN=MH^2\left(2\right)\)

Từ (1) và (2) suy ra \(NH\cdot PH=ME\cdot MN\)

b: Xét ΔMNP vuông tại M có MH là đường cao

nên \(\left\{{}\begin{matrix}MP^2=PH\cdot PN\\NM^2=NH\cdot NP\end{matrix}\right.\)

=>\(\dfrac{PH\cdot PN}{NH\cdot NP}=\dfrac{MP^2}{MN^2}\)

=>\(\dfrac{NH}{PH}=\left(\dfrac{MN}{MP}\right)^2\)

c: ΔMHP vuông tại H có HF là đường cao

nên \(MF\cdot MP=MH^2\)

mà \(ME\cdot MN=MH^2\)

nên \(MF\cdot MP=ME\cdot MN\)

=>\(\dfrac{MF}{ME}=\dfrac{MN}{MP}\)

Xét ΔMFN vuông tại M và ΔMEP vuông tại M có

\(\dfrac{MF}{ME}=\dfrac{MN}{MP}\)

Do đó: ΔMFN đồng dạng với ΔMEP

=>\(\widehat{MNF}=\widehat{MPE}\)

Phần a,b nha 

a)Xét tứ giác MDHE, có:

MDHˆ=900MDH^=900

Mˆ=900M^=900

HEMˆ=900HEM^=900

=> Tứ giác MDHE là hình chữ nhật

b) Gọi giao điểm của MH là DE là O MDHE là hình chữ nhật nên hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường

=> OH=OE

Xét tam giác EOH, có:

OH=OE(CMT)

=> Tam giác EOH cân tại O

=> H1ˆ=E1ˆH1^=E1^

Xét DEHP vuông tại E ,có:

A là trung điểm PH

=> AE = AH.

=> H2ˆ=E2ˆH2^=E2^

=> AEOˆ=AHOˆAEO^=AHO^ =900=900

Từ đó góc AEO = 900

hay tam giác DEA vuông tại E.

30 tháng 12 2021

ok thankyeu

3 tháng 9 2023

a) Vì tam giác MNP vuông tại M, nên MN là đường cao của tam giác và MH là đường trung tuyến. Do đó, MH = MN/2. Với giá trị của MN đã biết, bạn có thể tính được MH.

b) Khi kẻ HD vuông góc với MN tại D và HE vuông góc với MP tại E, ta có MDHE là hình chữ nhật. Vì MH là đường trung tuyến của tam giác MNP, nên MH = DE theo tính chất của đường trung tuyến.

c) Để chứng minh NH = 14,4 và PH = 25,6, chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.

d) Để chứng minh , chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.

e) Để chứng minh , chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.

g) Để chứng minh O là trực tâm của tam giác MNQ, chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.

a: Xét tứ giác MDHE có

\(\widehat{MDH}=\widehat{MEH}=\widehat{EMD}=90^0\)

=>MDHE là hình chữ nhật

b: MDHE là hình chữ nhật

=>MH cắt DE tại trung điểm của mỗi đường

mà O là trung điểm của MH

nên O là trung điểm của DE

=>DO=OE

c: ΔHDN vuông tại D

mà DI là đường trung tuyến

nên DI=HI=IN

=>ΔIHD cân tại I

ΔPEH vuông tại E

mà EK là đường trung tuyến

nên EK=KP=KH

=>ΔKEH cân tại K

\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)

\(=\widehat{KHE}+\widehat{HMD}\)

\(=\widehat{HMD}+\widehat{HND}=90^0\)

=>KE vuông góc ED(1)

\(\widehat{IDE}=\widehat{IDH}+\widehat{EDH}\)

\(=\widehat{IHD}+\widehat{EMH}\)

\(=\widehat{HPM}+\widehat{HMP}=90^0\)

=>ID vuông góc DE(2)

Từ (1) và (2) suy ra DI//EK

8 tháng 11 2023

cảm ơn nha bạn