Cho S=1 phần 2+2 phần 2²+3 phần 2³+.
.....+n phần 2ⁿ+....+2007 phần 2 mũ 2007
Nhanh nhé ngày 24 là mk học rồi mk tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{3}{17}+\frac{-5}{13}+\frac{-18}{35}+\frac{14}{17}+\frac{17}{-35}\)
=\(-\frac{5}{13}+\left(\frac{3}{17}+\frac{14}{17}\right)+\left(\frac{-18}{35}+\frac{-17}{35}\right)\)
= \(-\frac{5}{13}+1+\left(-1\right)\)
=\(-\frac{5}{13}\)
\(b,\frac{-3}{8}.\frac{1}{6}+\frac{3}{-8}.\frac{5}{6}+\frac{-10}{6}\)
=\(\frac{-3}{8}.\left(\frac{1}{6}+\frac{5}{6}\right)+\frac{-10}{6}\)
=\(\frac{-3}{8}.1+\frac{-10}{6}\)
=\(-\frac{49}{24}\)
\(c,\frac{-4}{11}.\frac{5}{15}.\frac{11}{-4}\)
=\(\left(\frac{-4}{11}.\frac{11}{-4}\right).\frac{1}{3}\)
=\(1.\frac{1}{3}=\frac{1}{3}\)
\(d,\frac{13}{8}+\frac{1}{8}:\left(0,75-\frac{1}{2}\right)-25\%.\frac{1}{2}\)
=\(\frac{13}{8}+\frac{1}{8}:\left(\frac{3}{4}-\frac{1}{2}\right)-\frac{1}{4}.\frac{1}{2}\)
=\(\frac{13}{8}+\frac{1}{8}:\frac{1}{4}-\frac{1}{8}\)
=\(\frac{13}{8}+\frac{1}{2}+\frac{-1}{8}\)
=\(\left(\frac{13}{8}+\frac{-1}{8}\right)+\frac{1}{2}\)
=\(\frac{3}{2}+\frac{1}{2}=2\)
\(e,\frac{-1}{2^2}-\left(-2\right)^2-5\)
=\(\frac{-1}{4}-4-5\)
=\(-\frac{37}{4}\)
\(f,\frac{121}{3}-\frac{5}{7}:\left(24-\frac{23}{57}\right)\)
=\(\frac{121}{3}-\frac{5}{7}:\frac{1345}{57}\)
=\(\frac{121}{3}-\frac{57}{1883}\)
\(\approx40,4\)
\(Cm:\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Gọi biểu thức trên là A, ta có:
3A = 1-2/3+3/3^2-...-100/3^99
3A + A = [1-2/3+3/3^2-...-100/3^99] + [1/3-2/3^2+3/3^3-...-100/3^100]
4A = 1 - 1/3 + 1/3^2 - ... - 1/3^99 - 100/3^99 [1]
Gọi B = 1-1/3 + 1/3^2 - ... - 1/3^99
3B = 3 - 1 + 1/3 - 1/3^2 -...-1/3^2012
3B + B = [3-1+1/3-1/3^2-...-1/3^2012] + [1-1/3 + 1/3^2 - ... - 1/3^99]
4B = 3 - 1/3^99
=> 4B < 3 => B < 1/4 [2]
Từ [1], [2] => 4A < B < 3/4 => A < 3/16 [đpcm]
MỎI TAY QUỚ
tk nha
Lúc đặt câu hỏi, bạn bấm vào góc trên cùng bên trái để gõ phép tính đẹp. Ý của bạn có phải là:
\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Gọi A = \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
=> A = \(\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)
A < \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A < \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
A < \(\frac{1}{2}-\frac{1}{100}\)
A < \(\frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)
=> A < \(\frac{1}{2}\)
<=> \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)