x2-2(m-5)x-4m+16=0
a) Chứng minh phương trình luôn có nghiem với mọi m (Mình làm rồi)
b) Tìm m sao cho: x13.x2-x1.x23
GIẢI HỘ MÌNH CÂU (b) Ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Δ=(2m-1)^2-4(m-1)
=4m^2-4m+1-4m+4
=4m^2-8m+5
=4m^2-8m+4+1=(2m-2)^2+1>=1>0 với mọi m
=>PT luôn có 2 nghiệm với mọi m
b: x1^3+x2^3=2m^2-m
=>(x1+x2)^3-3x1x2(x1+x2)=2m^2-m
=>(2m-1)^3-3(m-1)(2m-1)=2m^2-m
=>8m^3-12m^2+6m-1-3(2m^2-3m+1)-2m^2+m=0
=>8m^3-14m^2+7m-1-6m^2+9m-3=0
=>8m^3-20m^2+16m-4=0
=>m=1/2 hoặc m=1
a: Δ=(m+1)^2-4m=(m-1)^2>=0
=>Phương trình luôn có nghiệm
b: x1^2+x2^2+3x1x2=5
=>(x1+x2)^2+x1x2=5
=>(m+1)^2+m=5
=>m^2+3m-4=0
=>(m+4)(m-1)=0
=>m=1 hoặc m=-4
a) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)
\(=\left(2m-2\right)^2+4m\)
\(=4m^2-8m+4+4m\)
\(=4m^2-4m+4\)
\(=4m^2-4m+1+3\)
\(=\left(2m-1\right)^2+3>0\forall x\)
Do đó: Phương trình luôn có hai nghiệm x1,x2 với mọi m(Đpcm)
b) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=-m\end{matrix}\right.\)
Ta có: \(y_1+y_2=x_1+\dfrac{1}{x_2}+x_2+\dfrac{1}{x_1}\)
\(=\left(x_1+x_2\right)+\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)\)
\(=\left(2m-2\right)+\dfrac{2m-2}{-m}\)
\(=2m-2-\dfrac{2m-2}{m}\)
\(=\dfrac{2m^2-2m-2m+2}{m}\)
\(=\dfrac{2m^2-4m+2}{m}\)
\(=\dfrac{2\left(m^2-2m+1\right)}{m}\)
\(=\dfrac{2\left(m-1\right)^2}{m}\)
Ta có: \(y_1y_2=\left(x_1+\dfrac{1}{x_2}\right)\left(x_2+\dfrac{1}{x_1}\right)\)
\(=x_1x_2+2+\dfrac{1}{x_1x_2}\)
\(=-m+2+\dfrac{1}{-m}\)
\(=-m+2-\dfrac{1}{m}\)
\(=\dfrac{-m^2}{m}+\dfrac{2m}{m}-\dfrac{1}{m}\)
\(=\dfrac{-m^2+2m-1}{m}\)
\(=\dfrac{-\left(m-1\right)^2}{m}\)
Phương trình đó sẽ là:
\(x^2-\dfrac{2\left(m-1\right)^2}{m}x-\dfrac{\left(m-1\right)^2}{m}=0\)
x2 - (m-1)x + 2m-6 = 0
a)xét delta
(m-1)2 - 4(2m-6) = m2 - 2m + 1 - 8m + 24
= m2 - 10m + 25 = (m-5)2 ≥ 0
=> pt luôn có 2 nghiệm với mọi m thuộc R
b) theo Vi-ét ta có
\(\left\{{}\begin{matrix}x1+x2=m-1\\x1x2=2m-6\end{matrix}\right.\)
theo đề ta có \(A=\dfrac{2x1}{x2}+\dfrac{2x2}{x1}\) đk: m ≠ 3
A = \(\dfrac{2x1^2+2x2^2}{x1x2}=\dfrac{2\left(\left(x1+x2\right)^2-2x1x2\right)}{2m-6}\)
A=\(\dfrac{m^2-6m+25}{m-3}\)
để A có giá trị nguyên thì m2 - 6m + 25 ⋮ m - 3
m2 - 6m + 9 + 16 ⋮ m - 3
(m-3)2 + 16 ⋮ m-3
16 ⋮ m - 3 => m-3 thuộc ước của 16
U(16) = { - 16; - 8; - 4; -2 ; -1 ; 1 ; 2; 4; 8; 16 }
=> m- 3 = { - 16; - 8; - 4; -2 ; -1 ; 1 ; 2; 4; 8; 16 }
m = { - 13 ; -5 ; -1; 1; 2; 4; 5; 7; 11; 19 }
a) Đây là phương trình bậc 2 ẩn x có
Δ = (-m)2 - 4(m-1)
= m2-4m+4 = (m-2)2
Do (m-2)2≥0 ∀m => Δ≥0 ∀m
Vậy phương trình luôn có nghiệm với mọi m.
b) Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\left(1\right)\\x_1x_2=m-1\left(2\right)\end{matrix}\right.\)
\(x_1=2x_2\left(3\right)\)
Từ (1)(3) ta có hệ phương trình: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1=2x_2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}3x_2=m\\x_1=2x_2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x_2=\dfrac{m}{3}\\x_1=\dfrac{2m}{3}\end{matrix}\right.\)
Thay \(x_1=\dfrac{2m}{3};x_2=\dfrac{m}{3}\) vào (2) ta có:
\(\dfrac{2m}{3}.\dfrac{m}{3}=m-1\)
<=> 2m2 = 9(m - 1)
<=> 2m2 - 9m + 9 = 0
<=> (m - 3)(2m - 3) = 0
<=> \(\left[{}\begin{matrix}m-3=0\\2m-3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}m=3\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy tại m ∈\(\left\{3;\dfrac{3}{2}\right\}\) thì hai nghiệm của phương trình thoả mãn x1=2x2
a) Ta có:
\(\Delta=b^2-4ac=\left(-m\right)^2-4.1.\left(m-1\right)\)
\(=m^2-4m+4=\left(m-2\right)^2\ge0\) với mọi m
Vậy phương trình đã cho luôn có nghiệm với mọi m
b) Do phương trình luôn có nghiệm với mọi m
Theo định lý Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\left(1\right)\\x_1x_2=\dfrac{c}{a}=\dfrac{m-1}{1}=m-1\left(2\right)\end{matrix}\right.\)
Mà \(x_1=2x_2\), thay vào (1) ta có:
\(2x_2+x_2=3\Leftrightarrow3x_2=m\Leftrightarrow x_2=\dfrac{m}{3}\)
\(\Rightarrow x_1=2x_2=\dfrac{2m}{3}\)
Thay \(x_1=\dfrac{2m}{3};x_2=\dfrac{m}{3}\) vào (2) ta có:
\(\dfrac{2m}{3}.\dfrac{m}{3}=m-1\)
\(\Leftrightarrow2m^2=9m-9\)
\(\Leftrightarrow2m^2-9m+9=0\) (*)
\(\Delta_m=\left(-9\right)^2-4.2.9=9\)
Phương trình (*) có 2 nghiệm:
\(m_1=\dfrac{-\left(-9\right)+\sqrt{9}}{2.2}=3\)
\(m_2=\dfrac{-\left(-9\right)-\sqrt{9}}{2.2}=\dfrac{3}{2}\)
Vậy \(m=3;m=\dfrac{3}{2}\) thì phương trình đã cho có hai nghiệm \(x_1;x_2\) thỏa mãn \(x_1=2x_2\)
\(x^2-\left(m+4\right)x+4m=0\) (1)
a)Thay x=2 vào pt (1) ta được: \(4-\left(m+4\right).2+4m=0\) \(\Leftrightarrow m=2\)
Thay m=2 vào pt (1) ta được: \(x^2-6x+8=0\)\(\Leftrightarrow x^2-4x-2x+8=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy nghiệm còn lại là 4
b)Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\Leftrightarrow m^2-8m+16>0\)\(\Leftrightarrow\left(m-4\right)^2>0\)\(\Leftrightarrow m\ne4\)
Do x1 là một nghiệm của pt \(\Rightarrow x_1^2-\left(m+4\right)x_1+4m=0\)
\(\Rightarrow x_1^2=\left(m+4\right)x_1-4m=0\)
Theo viet có: \(x_1+x_2=m+4\)
\(x_1^2+\left(m+4\right)x_2=16\)
\(\Leftrightarrow\left(m+4\right)x_1-4m+\left(m+4\right)x_2=16\)
\(\Leftrightarrow\left(m+4\right)\left(x_1+x_2\right)-4m-16=0\)
\(\Leftrightarrow\left(m+4\right)^2-4m-16=0\)
\(\Leftrightarrow m^2+4m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\end{matrix}\right.\)(Thỏa)
Vậy...
Đề thi HK2 quận Bình Tân hả bạn? :))