So sánh A=\(\frac{2004^{2005}+1}{2004^{2005}-2004}\) và B=\(\frac{2004^{2005}}{2004^{2005}+2004}\)
Giải nhanh giúp mình!! THANKS
AI NHANH MÌNH TICK CHO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)
\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)
Vì 1 = 1 và \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\) nên A > B
Vậy A > B
Chắc sai =))
\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=\frac{2003\cdot2004}{2003\cdot2004}-\frac{1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)
\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=\frac{2004\cdot2005}{2004\cdot2005}-\frac{1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)
có : \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\)
\(\Rightarrow1-\frac{1}{2003\cdot2004}< 1-\frac{1}{2004\cdot2005}\)
\(\Rightarrow A< B\)
\(B=\frac{2003+2004}{2004+2005}=\frac{2003}{2004+2005}+\frac{2004}{2004+2005}\)
Ta có: \(\frac{2003}{2004}>\frac{2003}{2004+2005}\)
\(\frac{2004}{2005}>\frac{2004}{2004+2005}\)
\(\frac{2003}{2004}+\frac{2004}{2005}>\frac{2003+2004}{2004+2005}\)
\(A>B\)
Vậy A>B
\(A=\dfrac{2004^{2005}+1}{2004^{2005}-2004}>1>\dfrac{2004^{2005}}{2004^{2005}+2004}=B\)
Vậy A > B
Ta có :
\(\dfrac{2004^{2005}+1}{2004^{2005}-2004}>1>\dfrac{2004^{2005}}{2004^{2005}+2004}\)
\(\Rightarrow\) \(A>1>B\)
\(\Rightarrow\) \(A>B\)
ta có
201410 + 20149=20149 x ( 2014+1 )
=20149 x 2015 (1)
mặt khác ta có : 201510=20159 x 2015 (2)
mà 20149 < 20159
=>20149 x 2015 <20159 x 2015
từ (1) và (2) => 201410 + 20149 < 201510
a) \(\frac{2005.2007-1}{2004+2005.2006}=\frac{\left(2014+1\right).2007-1}{2004+2005.2006}=\frac{2004+2005.2007-1}{2004+2005-2006}=\frac{2004+2005.2006}{2004+2005.2006}=1\)
A > B nhé
A = 20042005 / 20042005 - 2004 + 1 / 20042005 - 2004
B = 20042005 / 20042005 +2004
Ta có B < 20042005 / 20042005 - 2004 ( tử bằng nhau, mẫu B lớn hơn) >> A > B ( ng` ta thêm 1 vào hack não hs thôi )
Tuy mk chỉ học lớp 5 nhưng mk cũng sẽ thử đoán nha !
Chắc là A = B
nếu đúng thì tk cho mk nha !