Chứng minh rằng tồn tại bội số của 17 toàn số 1 là số 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong 1989 số được tạo bởi toàn chữ số 1
1
11
.......
1111...11 (1989 chữ số 1)
Khi lần lượt chia các số này cho 1989 ta sẽ có nhiều nhất 1989 phép chia có dư mà số dư của các phép chia này nằm trong khoảng từ 1 đến 1988. Theo nguyên lý Dirichlet thì sẽ có ít nhất 2 số khi chia cho 1989 có cùng số dư.
Giả sử ta có 2 số là số A có m chữ số 1 và số B có n chữ số 1 khi chia cho 1989 có cùng số dư và giả sử m>n
\(\Rightarrow A-B=C⋮1989\)
\(\Rightarrow C=1111...00\) (có m-n chữ số 1 và n chữ số 0) chia hết cho 1989 (dpcm)
Xét 31 số
7
77
777
...
7777....7777
31 chữ số 7
Nếu có 1 trong 31 số chia hết cho 31 thì bài toán được chứng minh
Nếu ko có số nào chia hết cho 31 thì ta có:Mọi số tự nhiên ko chia hết cho 31 thì có 30 trường hợp dư là 1;2;3;4;...;30 có 30 trường hợp
Mà số 31 số nên theo nguyên lý Đi rích-lê thì có ít nhất 2 số có cùng số dư khi chia cho 31
Gọi 2 số đó là:77777.....77777 77777............77777 \(\left(1\le n< m\le31\right)\)
n chữ số m chữ số
\(\Rightarrow777...7777-7777....777⋮31\)
m chữ số n chữ số
\(\Rightarrow777.....777.10^n⋮31\)
m-n chữ số
Mà (10^n,31)=1
\(\Rightarrow7777.....77777⋮31\)
m-n chứ số
Ró ràng m-n>0 vì m>n
Suy ra điều phải chứng minh
ta lập được 7 số sau
a1=1
a2=11
a3=111
a4=1111
a5=11111
a6=111111
a7=1111111
- Nếu một trong các số trên chia hết cho 7 thì bài toán đc chứng minh
-Nếu không có số nào chia hết cho 7 thì khi chia các số nà cho 7 được 6 số dư là một trong các số từ 1 đến 6 . Vì 7 số mà chỉ có 6 số dư nên phải có ít nhất hai số khi chia cho 7 cùng số dư nên hiệu của 2 số đó chia hết cho7 => đpcm
Vì 17 là số nguyên tố và bội các số đều có 0 nên bội của 17 luôn luôn là 0 và 1
Số nguyên tố là bội của 17 là 17 đấy bạn à. ^_^