Cho x là số hữu tỉ khác 0, y là số vô tỉ. Chứng minh rằng: x+y; x-y; x.y; \(\frac{x}{y}\) la những số vô tỉ
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Lời giải:
$x$ là số hữu tỉ khác $0$. Đặt $x=\frac{a}{b}$ với $a,b$ là số nguyên, $b\neq 0$.
Giả sử $x+y$ là số hữu tỉ. Đặt $x+y=\frac{c}{d}$ với $c,d\in\mathbb{Z}, d\neq 0$
$\Rightarrow y=\frac{c}{d}-x=\frac{c}{d}-\frac{a}{b}=\frac{bc-ad}{bd}$ là số hữu tỉ (do $bc-ad, bd\in\mathbb{Z}, bd\neq 0$)
Điều này vô lý do $y$ là số vô tỉ.
$\Rightarrow$ điều giả sử là sai. Tức là $x+y$ vô tỉ.
Hoàn toàn tương tự, $x-y$ cũng là số vô tỉ.
-------------------------------
Chứng minh $xy$ vô tỉ.
Giả sử $xy$ hữu tỉ. Đặt $xy=\frac{c}{d}$ với $c,d$ nguyên và $d\neq 0$
$\Rightarrow y=\frac{c}{d}:x=\frac{c}{d}:\frac{a}{b}=\frac{bc}{ad}\in\mathbb{Q}$
Điều này vô lý do $y\not\in Q$
$\Rightarrow$ điều giả sử là sai $\Rightarrow xy$ vô tỉ.
-------------------------------
CM $\frac{x}{y}$ vô tỉ.
Giả sử $\frac{x}{y}$ hữu tỉ. Đặt $\frac{x}{y}=\frac{c}{d}$ với $c,d$ nguyên, $d\neq 0$
$\Rightarrow y=x:\frac{c}{d}=\frac{a}{b}: \frac{c}{d}=\frac{ad}{bc}\in\mathbb{Q}$
Điều này vô lý do $y\not\in Q$
$\Rightarrow$ điều giả sử là sai. Tức là $\frac{x}{y}$ vô tỉ.