K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

B(x) = -3 + 5x - 2x2 = 0

                  <=> -2x2 + 5x - 3 = 0

                  <=> -2x2 + 2x + 3x - 3 = 0

                  <=> -2x(x - 1) + 3(x - 1) = 0

                  <=> (x - 1)(3 - 2x) = 0

                  <=> x - 1 = 0 hoặc 3 - 2x = 0

                  <=> x = 1 hoặc x = -3/2

Nghiệm của đa thức B(x) là x = 1 hoặc x = -3/2

B(x) = -3 + 5x - 2x2=-2x2 + 5x - 3 = -2x2 + 2x + 3x - 3 = -2x(x - 1) + 3( x - 1) = (-2x+3)(x-1)

Giả sử B(x)=0

=> (-2x+3)(x-1) = 0

=>hoặc -2x+ 3 = 0

    hoặc  x - 1=0

=> x = 1 ,5 hoặc x=1

vậy B(x) có nghiệm là 1 và 1,5

26 tháng 4 2021

 

A(x)=4x4−6x2−7x3−5x−6

B(x)=−5x2+7x3+5x+4−4x4

 

a/ - Tính:

 M(x)=A(x)+B(x)

M(x)=4x4+6x2−7x3−5x−6−5x2+7x3+5x+4−4x4

M(x)=x2−2

- Tìm nghiệm: 

M(x)=x2−2=0⇔x2=2⇔x=−√2;x=√2

b/ C(x)+B(x)=A(x)⇒C(x)=A(x)−B(x)

C(x)=4x4−6x2−7x3−5x−6−(−5x2+7x3+5x+4−4x4)

C(x)=4x4−6x2−7x3−5x−6+5x2−7x3−5x−4+4x4

C(x)=8x4−14x3−x2−10x−10

7 tháng 3 2022

cho đa thức : A(x)=4x^4+6x^2-7x^3-5x-6 và B(x)=-5x^2+x^3+5x+4-4x^4

a)Tính M(x)=A(x)+B(x) rồi tính nghiệm của đa thức M(x)

b)tìm đa thức C(x)sao cho C(x)|+B(x)=A(x)

4 tháng 5 2023

\(Câu8\)

\(a,A=\dfrac{1}{2}x^3\times\dfrac{8}{5}x^2=\left(\dfrac{1}{2}\times\dfrac{8}{5}\right)x^{3+2}=\dfrac{4}{5}x^5\)

b, \(P\left(0\right)=0^2-5.0+6=6\\ P\left(2\right)=2^2-5.2+6=0\)

Câu 9

\(a,A\left(x\right)+B\left(x\right)=5x^3+x^2-3x+5+5x^3+x^2+2x-3\\ =\left(5x^3+5x^3\right)+\left(x^2+x^2\right)+\left(-3x+2x\right)+\left(5-3\right)\\ =10x^3+2x^2-x+2\)

\(b,H\left(x\right)=A\left(x\right)-B\left(x\right)=5x^3+x^2-3x+5-\left(5x^3+x^2+2x-3\right)\\ =5x^3+x^2-3x+5-5x^3-x^2-2x+3\\ =\left(5x^3-5x^3\right)+\left(x^2-x^2\right) +\left(-3x-2x\right)+\left(5+3\right)\\ =-5x+8\)

\(H\left(x\right)=0\\ \Rightarrow-5x+8=0\\ \Rightarrow x=\dfrac{8}{5}\)

vậy nghiệm của đa thức là \(x=\dfrac{8}{5}\)

2 tháng 9 2021

a, \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)

\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)

b, \(M\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2\)

c, Đặt \(M\left(x\right)+2=0\Rightarrow-x^2+4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

a: \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)

\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)

b: Ta có: \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(=5x^3-4x+7-5x^3-x^2+4x-5\)

\(=-x^2+2\)

c: Đặt M(x)+2=0

\(\Leftrightarrow4-x^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

19 tháng 5 2021

`Q(x)=-5x^3+2x-3+2x-x^2-2`

`=-5x^3+4x-5`

`M(x)=P(x)+Q(x)`

`=5x^3-3x+7-5x^3+4x-5`

`=x+2`

`N(x)=P(x)-Q(x)`

`=5x^3-3x+7+5x^3-4x+5`

`=10x^3-7x+12`

b)Đặt `M(x)=0`

`<=>x+2=0`

`<=>x=-2`

Vậy M(x) có nghiệm `x=-2`

1k like đâu haha

19 tháng 5 2021

a) \(P\left(x\right)=5x^3-3x+7-x\\ =5x^3+\left(-3x-x\right)+7\\ =5x^3-4x+7\\ Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\\ =-5x^3+\left(2x+2x\right)+\left(-3-2\right)+x^2\\ =-5x^3+4x-5+x^2\)

 

\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\\ =5x^3-4x+7+\left(-5x^3\right)+4x-5-x^2\\ =\left(5x^3-5x^3\right)+\left(-4x+4x\right)+\left(7-5\right)-x^2\\ =2-x^2\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)\\ =5x^3-4x+7-\left(-5x^3+4x-5+x^2\right)\\ =5x^3-4x+7+5x^3-4x+5-x^2\\ =\left(5x^3+5x^3\right)+\left(-4x-4x\right)+\left(7+5\right)+x^{^2}\\ =10x^3-8x+12+x^2\)

a: \(P\left(x\right)=5x^3-4x+7\)

\(Q\left(x\right)=-5x^3-x^2+4x-5\)

b: \(M\left(x\right)=-x^2+2\)

\(N\left(x\right)=10x^3+x^2-8x+12\)

c: Đặt M(x)=0

=>2-x2=0

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

NV
11 tháng 1 2024

b.

Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)

Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm

c.

Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)

Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm

d.

Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)

Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm

4.

d. \(x^3-19x^2=0\)

\(\Leftrightarrow x^2\left(x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)

Vậy đa thức có 2 nghiệm là \(x=0;x=19\)

18 tháng 6 2021

`a)P(x)=5x^3-3x+7-x`

`=5x^3-3x-x+7`

`=5x^3-4x+7`

`Q(x)=-5x^3+2x-3+2x-x^2-2`

`=-5x^3-x^2+2x+2x-3-2`

`=-5^3-x^2+4x-5`

`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`

`=5x^3-5x^3-x^2-4x+4x+7-5`

`=-x^2+2`

`N(x)=5x^3-4x+7+5x^3+x^2-4x+5`

`=5x^3+5x^3+x^2-4x-4x+7+5`

`=10x^3+x^2-8x+12`

Đặt `M(x)=0`

`<=>-x^2+2=0`

`<=>2=x^2`

`<=>x=+-sqrt2`

5 tháng 7 2021

a) \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)

\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)

b) \(M\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2\)

\(N\left(x\right)=5x^3-4x+7-\left(-5x^3-x^2+4x-5\right)=10x^3+x^2-8x+12\)

a) Ta có: \(P\left(x\right)=5x^3-3x+7-x\)

\(=5x^3-4x+7\)

Ta có: \(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\)

\(=-5x^3-x^2+4x-5\)

b) Ta có: M(x)=P(x)+Q(x)

\(=5x^3-4x+7-5x^3-x^2+4x-5\)

\(=-x^2+2\)

Ta có: N(x)=P(x)-Q(x)

\(=5x^3-4x+7+5x^3+x^2-4x+5\)

\(=10x^3+x^2-8x+12\)

c) Đặt M(x)=0

\(\Leftrightarrow-x^2+2=0\)

\(\Leftrightarrow-x^2=-2\)

\(\Leftrightarrow x^2=2\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

29 tháng 5 2021

a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12

= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x

= 6x4 - 17 + 6x3 - 5x

= 6x4 + 6x3 - 5x - 17

B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2

= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2

= 4x4 + 6x3 - 5x - 15 - 2x2

= 4x4 + 6x3 - 2x2 - 5x - 15

b) C(x) = A(x) - B(x)

=  6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)

= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15

= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2

= 2x4 - 2 + 2x2 

= 2x4 + 2x2 - 2