cho hình bình hànhABCD có AD=6cm,AB=8cm . Trên cạnh BC lấy M sao cho BM=2/3BC. Đường thẳng AM cắt đường chéo BD tại I và cắt đường thẳng DC tại N
a) Chứng minh tam giác MAB đồng dạng tam giác AND
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AD // BC (gt)
b) Xét ΔAMB và ΔNAD có:
∠BAM = ∠ AND (so le trong, AB // CD)
∠ABM = ∠ADN (góc đối của hình bình hành)
⇒ ΔAMB ∼ ΔNAD (g.g)
c) ΔAMB ∼ ΔNAD (cmt)
Do đó: CN = DN – DC = 12 – 8 = 4 (cm)
d) Do AB //CD nên theo hệ quả định lí Ta-lét, ta có
Tương tự, do AD // BM nên
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABD\(\sim\)ΔHBA
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)
Từ (1) ⇒AB⇒AB // CD ⇒⇒ AB // ND
⇒ˆA2=ˆN1⇒A2^=N1^ (5)
Từ (1) ⇒ˆABC=ˆCDA⇒ABC^=CDA^ (2 góc đối của hình bình hành) (6)
Từ (5), (6) ⇒ΔAMB∼ΔAND⇒ΔAMB∼ΔAND (G-G)