K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

a) Gọi d là UCLN của (n+1;2n+3)

mà n + 1 \(⋮\)d nên 2n+3\(⋮\)d

\(\Rightarrow2.\left(n+1\right)⋮d\Leftrightarrow2n+2⋮d\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow dpcm\)

mink nghĩ vậy bạn ạ, làm vậy thôi

9 tháng 5 2017

Gọi UCLN[n+1;n+2] = d, d E N*

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\)

\(\Rightarrow\left[n+2\right]-\left[n+1\right]=1⋮d\)

=> d = 1

=> \(\frac{n+1}{n+2}\)

là ps tối giản

21 tháng 1 2022

Gọi \(x\)là \(\text{Ư}CLN\left(2n+1,2n+3\right)\left(x\in Z\right)\)

ta có \(\left(2n+1\right)⋮x\\ \left(2n+3\right)⋮x\\ \Rightarrow\left[\left(2n+3\right)-\left(2n+1\right)\right]⋮x\\ \Rightarrow\left(2n+3-2n-1\right)⋮x\\ \Rightarrow\left(3-1\right)⋮x\\ \Rightarrow2⋮x\\ \Rightarrow x\in\text{Ư}\left(2\right)=\left\{-1;1;-2;2\right\}\)

Vì \(\left(2n+1\right);\left(2n+3\right)l\text{ẻ}\\ \Rightarrow x=\pm1\)

Vậy 2n+1/ 2n+3 tối giản

 

Chứng minh phân số sau tối giản với mọi n: 2n + 1 / 2n +3
                                           giải
gọi d thuộc ƯC ( 2n + 1 , 2n + 3 )
=> 2n + 1 chia hết cho d hoặc 2n + 3 chia hết cho d 
=> ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d
=> 2n + 3 - 2n - 1 chia hết cho d
=> 2 chia hết cho d
=> d thuộc Ư ( 2 ) 
vì 2n + 1 và 2n + 3 đều là số lẻ nên ko thể có ước = 2
=> ƯCLN ( 2n + 1 , 2n + 3 ) = 1
vậy phân số sau là phân số tối giản

24 tháng 4 2018

Phân số tối giản là phân số có ước chung lớn nhất của tử và mẫu là 1

                Giải

Gọi ƯCLN (2n+1;3n+2) là d

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+2⋮d\end{cases}}\)

\(\Rightarrow6n+3-\left(6n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy p/s trên là phân số tối giản

24 tháng 2 2017

gọi d=ƯCLN(10n+9;10n+8)

ta có 10n+9 chia hết cho d

         10n+8 chia hết cho d

=>10n+9-10n-8 chia hết cho d

=>1chia hết cho d

=>d=1

=>\(\frac{10n+9}{10n+8}\)là p/s tối giản

19 tháng 7 2016

\(\frac{2n+3}{3n+3}=\frac{\left(2n+2\right)+1}{3n+3}=\frac{2\left(n+1\right)+1}{3\left(n+1\right)}=\frac{2}{3}+\frac{1}{3n+1}\left(n\in N\right)\)

19 tháng 7 2016

Gọi d là UCLN(2n+3;3n+3)

Ta có:

[3(2n+3)]-[2(3n+3)] chia hết d

=>[6n+9]-[6n+6] chia hết d

=>3 chia hết d

=>d thuộc Ư(3)={1;3}

Mà với d=3 =>ps ko tối giản =>d=1

=>ps tối giản

1 tháng 4 2018

gọi d là ƯCLN của n+1 và 2n+3 ta có:

(2n+3)-(n+1) chia hết cho d

=> (2n+3)-2(n+1) cia hết cho d

=>2n+3-2n-2 chia hết cho d

=> 1 chia hết cho d

vậy n+1/2n+3 là 2 phân số tối giải

26 tháng 6 2020

Gọi d là UCLN (10n+1,15n+2)

\(\Leftrightarrow10n+1⋮d;15n+2⋮d\)

\(\Leftrightarrow3\left(10n+1\right)⋮d;2\left(15n+2\right)⋮d\)

\(\Leftrightarrow30n+3⋮d;30n+4⋮d\)

\(\Leftrightarrow\left(30n+4\right)-\left(30n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\frac{10n+1}{15n+2}\) là phân số tối giản

\(\RightarrowĐFCM\)

26 tháng 6 2020

Với n nguyên : 

( 10n + 1 ; 15 n + 2 ) = ( 10n + 1; ( 15n +  2 ) - ( 10 n + 1) ) = ( 10n + 1; 5n + 1 ) = ( 5n + 1 ; 5n ) = ( 5n ; 1 ) = 1 

=> 10n + 1 và 15n + 2 là 2 số nguyên tố cùng nhau với n nguyên 

=> 10n + 1/ 15n + 2 là phân số tối giản.