\(6xy^2\cdot\left(\frac{1}{3}yz^2\right)\)
giúp e giải với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)
=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)
=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)
=> G = \(\frac{2.50}{1.51}\)
=> G = \(\frac{100}{51}\)
Mấy câu trên dễ rồi mình hướng dẫn bạn làm câu d và e
d)
\(\left(x-\frac{2}{3}\right)\cdot\left(1-\frac{4}{16}x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=0\\1-\frac{1}{4}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=4\end{cases}}\)
Câu e, tương tự nhé bạn
a. \(\frac{3}{4}x-\frac{1}{5}=\frac{2}{3}\)
\(\frac{3}{4}x=\frac{13}{15}\)
\(x=\frac{52}{45}\)
b. \(\frac{2}{5}.\left(x+1\right)-\frac{1}{2}=0\)
\(\frac{2}{5}.\left(x+1\right)=\frac{1}{2}\)
\(x+1=\frac{5}{4}\)
\(x=\frac{1}{4}\)
c.\(\frac{1}{5}.x-\frac{2}{3}=\frac{4}{8}\)
\(\frac{1}{5}.x=\frac{7}{6}\)
\(x=\frac{35}{6}\)
d. \(\left(x-\frac{2}{3}\right).\left(1-\frac{4}{16}x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=0\\1-\frac{4}{16}x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0+\frac{2}{3}\\\frac{4}{16}x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=4\end{cases}}}\)
Vậy x = 2/3 hoặc x = 4
e. \(\left(0,32-x\right).\left(4,5-\frac{3}{2}x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}0,32-x=0\\4,5-\frac{3}{2}x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,32-0\\\frac{3}{2}x=4,5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0,32\\x=3\end{cases}}}\)
Vậy x = 0,32 hoặc x = 3
\(A=4+\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{19}\right)\cdot\left(1-\frac{1}{20}\right)\)
\(A=4+\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{18}{19}\cdot\frac{19}{20}\right)\)
\(A=4+\frac{1\cdot2\cdot3\cdot...\cdot18\cdot19}{2\cdot3\cdot4\cdot...\cdot19\cdot20}\)
\(A=4+\frac{1}{20}\)
\(A=\frac{81}{20}\)
\(=2xy^3z^2\)