Tính: \(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2-\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ dàng nhận thấy \(\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}>0\)
Đặt \(a=\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}>0\)
\(\Rightarrow a^2=10-2\sqrt{25-17}=10-2\sqrt{8}=10-4\sqrt{2}\)
\(\Rightarrow a=\sqrt{10-4\sqrt{2}}\) (do \(a>0\) )
Đặt \(b=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\), tương tự dễ dàng c/m \(b>0\)
\(\Rightarrow b^2=6-2\sqrt{9-5}=2\Rightarrow b=\sqrt{2}\)
Vậy \(A=\dfrac{a-\sqrt{10-4\sqrt{2}}+4}{b+2-\sqrt{2}}=\dfrac{\sqrt{10-4\sqrt{2}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{2}+2-\sqrt{2}}\)
\(\Rightarrow A=\dfrac{4}{2}=2\)
\(\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-\dfrac{11\left(4-\sqrt{5}\right)}{16-5}=\sqrt{5}-4+\sqrt{5}=2\sqrt{5}-4\)
\(1.\sqrt{17-4\sqrt{9+4\sqrt{5}}}=\sqrt{17-4\sqrt{5+2.2\sqrt{5}+4}}=\sqrt{17-4\left(\sqrt{5}+2\right)}=\sqrt{5-2.2\sqrt{5}+4}=\sqrt{5}-2\)
\(2.\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}=\sqrt{17-6\sqrt{2+2\sqrt{2}+1}}=\sqrt{17-6\left(\sqrt{2}+1\right)}=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)\(3.\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}=\sqrt{3+\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}}=\sqrt{3+\sqrt{3-2\sqrt{3}+1}}=\sqrt{2+\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)
\(4.\sqrt{27+10\sqrt{2}}:\dfrac{1}{\sqrt{\left(\sqrt{2}-5\right)^2}}=\sqrt{25+2.5\sqrt{2}+2}.\left(5-\sqrt{2}\right)=\left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)=5-2=3\)
Ta có:
\(A=\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}\)
\(\Leftrightarrow A^2=10-2\sqrt{25-17}=10-4\sqrt{2}\)
\(\Leftrightarrow A=\sqrt{10-4\sqrt{2}}\)
Ta lại có:
\(B=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)
\(\Leftrightarrow B^2=6-2\sqrt{9-5}=2\)
\(\Leftrightarrow B=\sqrt{2}\)
Thế vô biểu thức ban đầu ta được
\(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2-\sqrt{2}}\)
\(=\frac{\sqrt{10-4\sqrt{2}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{2}+2-\sqrt{2}}=\frac{4}{2}=2\)
\(\sqrt{2}\)