help me!
Tìm x;y thuộc Z biết: 25-y2 =8(x-2015)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
24 - 16(x - 1/2) = 23
=> 16(x - 1/2) = 24 - 23
=> 16(x - 1/2) = 1
=> x - 1/2 = 1/16
=> x = 1/16 + 1/2
=> x = 9/16
\(24-16(x-\frac{1}{2})=23\)
\(16(x-\frac{1}{2})=24-23\)
\(16(x-\frac{1}{2})=1\)
\(x-\frac{1}{2}=\frac{1}{16}\)
\(x=\frac{1}{16}+\frac{1}{2}\)
\(x=\frac{9}{16}\)
Vậy số thực x cần tìm là \(\frac{9}{16}\)
Chúc bạn hok tốt ~
Ta có : \(x^2+x+13=y^2\)
\(\Leftrightarrow4\left(x^2+x+13\right)=4y^2\)
\(\Leftrightarrow4x^2+4x+52=4y^2\)
\(\Leftrightarrow\left(4x^2+4x+1\right)-4y^2=-51\)
\(\Leftrightarrow\left(2y\right)^2-\left(2x+1\right)^2=51\)
\(\Leftrightarrow\left(2y+2x+1\right)\left(2y-2x-1\right)=51\)
Rồi xét từng trường hợp là ra nha
\(x\cdot\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-2\right\}\)/
x2015 = x2016
=> x2016 - x2015 =0
=> x2015.(x-1) = 0
=> x=0 hoặc x=1
(x - 1)(x - 3) < 0
⇒ x - 1 > 0 và x - 3 < 0
Hoặc x - 1 < 0 và x - 3 > 0
TH1: x - 1 > 0 và x - 3 < 0
*) x - 1 > 0
x > 0 + 1
x > 1 (1)
*) x - 3 < 0
x < 0 + 3
x < 3 (2)
Từ (1) và (2) ⇒ 1 < x < 3
TH2: x - 1 < 0 và x - 3 > 0
*) x - 1 < 0
x < 1 (3)
*) x - 3 > 0
x > 3 (4)
Từ (3) và (4) ⇒ không tìm được x thỏa mãn trường hợp 2
Vậy 1 < x < 3 thì (x - 1)(x - 3) < 0
\(\Leftrightarrow x-2=\left(x-2\right)^3\\ \Leftrightarrow\left(x-2\right)\left(x^2-4x+4-1\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x^2-4x+3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)
\(\sqrt[3]{x-2}=x-2\)
\(\Leftrightarrow\sqrt[3]{x-2}\left(\sqrt[3]{\left(x-2\right)^2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\left(x-2\right)^2=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-2=1\\x-2=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)
Ta có :
\(xy=x:y\)
\(\Rightarrow y^2=1\)
\(\Rightarrow\left[\begin{array}{nghiempt}y=1\\y=-1\end{array}\right.\)
(+) y = 1
\(\Rightarrow x+1=x\) ( vô lý )
(+) \(y=-1\)
\(\Rightarrow x=\frac{1}{2}\) ( Nhận )
Vậy \(\left(x;y\right)=\left(\frac{1}{2};-1\right)\)
Cách nhanh nhất để giải bài này là dùng phương pháp chặn em nhé.
Phương pháp chặn là giới hạn các giá trị của biến kết hợp điều kiện đề bài để tìm biến. Em tham khảo cách này của cô xem.
25 - y2 = 8( \(x\) - 2015)2
ta có: ( \(x-2015\))2 ≥ 0 ∀ \(x\) (1)
Mặt khác ta có: y2 ≥ 0 ∀ y ⇒ - y2 ≤ 0 ∀ y ⇒ 25 - y2 ≤ 25 ∀ y
⇒ 25 - y2 = 8(\(x-2015\))2 ≤ 25 ∀ \(x,y\)
⇒ (\(x-2015\))2 ≤ \(\dfrac{25}{8}\) = 3,125 ∀ \(x\) (2)
Kết hợp (1) và (2) ta có: 0 ≤ (\(x-2015\))2 ≤ 3,125
vì \(x\in\) Z nên ⇒ (\(x-2015\))2 \(\in\) Z
⇒ (\(x-2015\))2 \(\in\) {0; 1; 2; 3}
th1:(\(x-2015\) )2= 0 ⇒ \(x\) = 2015; ⇒ 25 - y2 = 0⇒ y = +-5
th2:(\(x-2015\))2 = 1⇒ 25 - y2 = 8 ⇒ y2 = 25 - 8 ⇒ y = +- \(\sqrt{17}\) ( loại)
th3: (\(x-2015\))2 = 2 ⇒ \(\left[{}\begin{matrix}x=\sqrt{2}+2015\left(ktm\right)\\x=-\sqrt{2}+2015\left(ktm\right)\end{matrix}\right.\)
th4: (\(x-2015\))2 = 3 ⇒ \(\left[{}\begin{matrix}x=\sqrt{3}+2015\left(ktm\right)\\x=-\sqrt{3}+2015\left(ktm\right)\end{matrix}\right.\)
Vậy (\(x,y\)) = ( 2015; -5); ( 2015; 5) là giá trị thỏa mãn đề bài