K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

a) tính BC:

Áp dụng định lí Py-tago vào \(\Delta\)vuông ABC

ta có: BC2=BA2+AC2

       =>BC2= 62+82

     => BC2= 36+64

     =>BC2= 100

     => BC= \(\sqrt{100}\)

    => BC= 10 (cm)

b)c/m \(\Delta\)HAB đồng dạng \(\Delta\)HCA:

Ta có: - tam giác HAB đồng dạng với tam giác ABC ( \(\widehat{B}\)chung)

         - tam giác HAC đồng dạng với tam giác ABC ( \(\widehat{C}\)chung)

     => \(\Delta HAB\)đồng dạng \(\Delta HCA\)( cùng đồng dạng \(\Delta ABC\))

21 tháng 4 2017

có bạn nào giúp minh câu c và d được k. mình k cho

a: BC=10cm

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\)

Do đó: ΔHAB∼ΔHCA

4 tháng 3 2022

Cảm ơn bạn rất nhìu😘

6 tháng 5 2018

a)  Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

                \(AB^2+AC^2=BC^2\)

        \(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

        \(\Leftrightarrow\)   \(BC=\sqrt{100}=10\)

b)  Xét  \(\Delta HAB\)và   \(\Delta HCA\)có:

      \(\widehat{AHB}=\widehat{CHA}=90^0\)

     \(\widehat{HAB}=\widehat{HCA}\)  (cùng phụ với góc HAC)

suy ra:   \(\Delta HAB~\Delta HCA\)(g.g)

c)  Xét \(\Delta ABH\)và  \(\Delta CBA\)có:

       \(\widehat{AHB}=\widehat{CAB}=90^0\)

      \(\widehat{B}\) CHUNG

suy ra:   \(\Delta ABH~\Delta CBA\)  (g.g)

\(\Rightarrow\)\(\frac{BH}{AB}=\frac{AB}{BC}\) 

\(\Rightarrow\)\(BH.BC=AB^2\)  (1)

\(BE=BC-CE=10-4=6\)  \(\Rightarrow\)\(BE=AB\) \(\Rightarrow\)\(BE^2=AB^2\)  (2) 

Từ (1) và (2) suy ra:   \(BE^2=BH.BC\)

d)    \(S_{ABC}=\frac{AB.AC}{2}=24\)

\(\Delta ABC\)   có   \(BD\)là phân giác \(\widehat{ABC}\)

\(\Rightarrow\)\(\frac{S_{BAD}}{S_{BDC}}=\frac{AB}{BC}=\frac{3}{5}\)  

\(\Rightarrow\)\(\frac{S_{BAD}}{3}=\frac{S_{BDC}}{5}=\frac{S_{BAD}+S_{BDC}}{3+5}=\frac{S_{ABC}}{8}=3\)

\(\Rightarrow\)\(S_{BAD}=9\)

Xét  \(\Delta ABD\)và   \(\Delta EBD\) có:

    \(AB=EB\) (câu c)

   \(\widehat{ABD}=\widehat{EBD}\) (gt)

   \(BD:\)chung

suy ra:  \(\Delta ABD=\Delta EBD\) (c.g.c)

\(\Rightarrow\)\(S_{ABD}=S_{EBD}=9\)

\(\Rightarrow\)\(S_{CED}=S_{ABC}-S_{ABD}-S_{EBD}=6\)

p/s: tính diện tích CED còn cách khác, bn dễ dàng c/m tgiac CED ~ tgiac CAB, đến đây thì lm típ nha, 

13 tháng 4 2021

đc

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)

Vậy: BC=10cm; AD=3cm; CD=5cm

b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)

\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)

Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)

Xét ΔCED và ΔCAB có 

\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)

\(\widehat{C}\) chung

Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)

 

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=100\)

hay BC=10cm

Xét ΔABC có BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

hay \(AB^2=BH\cdot BC\)

19 tháng 8 2021

c) Ta có: \(\widehat{ABD}=\widehat{DBC}\)( BD là phân giác )\(\Rightarrow90^0-\widehat{ABD}=90^0-\widehat{DBC}\Rightarrow\widehat{BIH}=\widehat{ADI}\Rightarrow\widehat{AID}=\widehat{ADI}\Rightarrow\Delta ADI\) cân tại A\(\Rightarrow AI=AD\Rightarrow\dfrac{AB}{AI}=\dfrac{AB}{AD}\)

Xét Δ ABI và Δ CBD có:

\(\widehat{BAI}=\widehat{BCD}\left(\Delta ABC\sim\Delta HBA\right)\)

\(\dfrac{AB}{AI}=\dfrac{BC}{CD}\left(=\dfrac{AB}{AD}\right)\)

\(\Rightarrow\Delta ABI\sim\Delta CBD\left(c.g.c\right)\)

d) Xét ΔABH có:

BI là tia phân giác của \(\widehat{ABH}\)

\(\Rightarrow\dfrac{IH}{IA}=\dfrac{BH}{AB}\left(1\right)\)( tính chất tia phân giác)

Xét ΔABC có:

BD là tia phân giác của \(\widehat{ABC}\)

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)( tính chất tia phân giác)

Ta có: \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\left(\Delta ABC\sim\Delta HBA\right)\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(đpcm\right)\)

 

 

9 tháng 5 2018

Hỏi đáp Toán

a) \(BC.AH=AB.AC=6.8=48cm^2\) (bằng 2 lần diện tích ABC).

b) HAB và HAC là 2 tam giác vuông có \(\stackrel\frown{HBA}=\widehat{HAC}\) (cùng phụ với \(\widehat{BCA}\)) nên HAB đồng dạng với HAC. Từ đó \(\dfrac{HB}{AH}=\dfrac{AH}{HC}\Rightarrow HB.HC=AH^2\) (đây là hệ thức lượng quen thuộc trong tam giác vuông: đường cao thuộc cạnh huyền bằng trung bình nhân của hai cạnh góc vuông)

c) Áp dụng Pitago ta có \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10cm\). Từ đó \(BE=BCV-CE=10-4=6cm=BA\).

Ta có \(BE^2=BA^2=BH.BC\) (chứ không phải là \(BH.CH\) nhé).

d) Không biết là bạn cần tính gì? Nếu là cần tính diện tích của tam giác CED thì có thể làm như sau:

Áp dụng tính chất phân giác có \(\dfrac{CD}{AD}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\Rightarrow\dfrac{CD}{CA}=\dfrac{CD}{CD+AD}=\dfrac{5}{3+5}=\dfrac{5}{8}\)

\(\dfrac{dt_{CED}}{dt_{CAB}}=\dfrac{CE}{CB}.\dfrac{CD}{CA}=\dfrac{4}{10}.\dfrac{5}{8}=\dfrac{1}{4}\), do đó \(dt_{CED}=\dfrac{1}{4}dt_{ABC}=\dfrac{1}{4}.\dfrac{1}{2}.6.8=6cm^2\)

12 tháng 8 2019

Tại sao (diện tích tam giác ced / diện tích tam giác cab) =ce/cb*cd/ca

27 tháng 1 2016

bạn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 1 2016

du

b: Xét ΔADB và ΔAEC có 

\(\widehat{A}\) chung

\(\widehat{ABD}=\widehat{ACE}\left(=\dfrac{1}{2}\widehat{ABC}\right)\)

Do đó: ΔADB\(\sim\)ΔAEC

19 tháng 8 2021

giúp mk câu d ik ạ