K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>\(\dfrac{8}{x}+\dfrac{8}{y}+\dfrac{20}{3}\cdot\dfrac{1}{y}=1\)

=>\(\dfrac{8}{x}+\dfrac{44}{3y}=1\)

=>\(\dfrac{24y+44x}{3xy}=1\)

=>44x+24y=3xy

=>44x+24y-3xy=0

=>44x-3y(x-8)=0

=>44x-352-3y(x-8)=352

=>(x-8)(44-3y)=352

=>\(\left(x-8;44-3y\right)\in\left\{\left(32;11\right)\left(44;8\right);\left(176;2\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(40;11\right);\left(52;12\right);\left(184;14\right)\right\}\)

5 tháng 4 2023

ĐKXĐ: \(\left\{{}\begin{matrix}2x\ne0\\2\left(25-x\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne25\end{matrix}\right.\)

\(\dfrac{1}{2x}+\dfrac{1}{2\left(25-x\right)}=\dfrac{1}{12}\\ \Leftrightarrow\dfrac{25-x+x}{2x\left(25-x\right)}=\dfrac{1}{12}\\ \Leftrightarrow\dfrac{25}{-2x^2+50x}=\dfrac{1}{12}\\ \Leftrightarrow-2x^2+50x=300\\ \Leftrightarrow-2x^2+50x-300=0\\ \Leftrightarrow\left[{}\begin{matrix}x=15\left(tm\right)\\x=10\left(tm\right)\end{matrix}\right.\)

Vậy...

26 tháng 11 2023

\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\left(dkxd:x\ne0,x\ne5\right)\\ =\dfrac{3x-x-1}{x\left(x-5\right)}=\dfrac{2x-1}{x^2-5x}\)

----------------------------------------

\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\left(dkxd:x\ne0,y\ne-2\right)\\ =\dfrac{8}{4}.\dfrac{15x^2.x^3}{3x^2}=10x^3\)

------------------------------------------

\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\left(dkxd:x\ne1,x\ne-1\right)\\ =\dfrac{8\left(y-1\right)}{3\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)^2}{4\left(y-1\right)^3}\\ =\dfrac{2\left(x-1\right)}{3\left(x+1\right)\left(y-1\right)^2}\)

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}$

$\Rightarrow (\frac{1}{x}+\frac{1}{y})+(\frac{1}{z}-\frac{1}{x+y+z})=0$

$\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$

$\Leftrightarrow (x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)})=0$

$\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y)(y+z)(x+z)=0$

$\Leftrightarrow x=-y$ hoặc $y=-z$ hoặc $z=-x$

Nếu $x=-y$ thì:

$P=\frac{3}{4}+[(-y)^8-y^8](y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}+0.(y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}$

Nếu $y=-z$ thì:

$P=\frac{3}{4}+(x^8-y^8)[(-z)^9+z^9](z^{10}-x^{10})=\frac{3}{4}+(x^8-y^8).0.(z^{10}-x^{10})=\frac{3}{4}$

Nếu $z=-x$ thì:

$P=\frac{3}{4}+(x^8-y^8)(y^9+z^9)[(-x)^{10}-x^{10}]=\frac{3}{4}+(x^8-y^8)(y^9+z^9).0=\frac{3}{4}$

30 tháng 12 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x+4-5}{x+2}-\dfrac{5}{y-1}=-\dfrac{14}{3}\\\dfrac{3}{x+2}+\dfrac{2y-2+5}{y-1}=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-5}{x+2}-\dfrac{5}{y-1}=-\dfrac{14}{3}-2=-\dfrac{20}{3}\\\dfrac{3}{x+2}+\dfrac{5}{y-1}=6\end{matrix}\right.\)

=>x+2=3 và y-1=1

=>x=1 và y=2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2x}{x-1}+\dfrac{3}{y+2}=\dfrac{-2}{5}\\\dfrac{-5}{x-1}-\dfrac{4y}{y+2}=\dfrac{1}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2x+2-2}{x-1}+\dfrac{3}{y+2}=\dfrac{-2}{5}\\\dfrac{-5}{x-1}-\dfrac{4y+8-8}{y+2}=\dfrac{1}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{2}{x-1}+\dfrac{3}{y+2}=-\dfrac{2}{5}+2=\dfrac{8}{5}\\\dfrac{-5}{x-1}+\dfrac{8}{y+2}=\dfrac{1}{10}-4=-\dfrac{39}{10}\end{matrix}\right.\)

=>x-1=-2/49 và y+2=-5/79

=>x=47/49 và y=-5/79-2=-163/79

20 tháng 11 2021

Đúng hết mà?

12 tháng 1 2019
https://i.imgur.com/NPx7OjZ.jpg
12 tháng 1 2019
https://i.imgur.com/cKHt1qr.jpg
16 tháng 11 2021

a: \(A=\dfrac{x^2+2xy+y^2-x^2+xy+2y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{3y^2+3xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{3y}{x-y}\)

25 tháng 8 2018

Ta có \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\Rightarrow\left(xy+xz+yz\right)\left(x+y+z\right)=xyz\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\Rightarrow\left[{}\begin{matrix}x+y=0\\x+z=0\\y+z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-y\\z=-x\\y=-z\end{matrix}\right.\)TH1: Nếu x=-y⇒x8-y8=x8-(-x)8=0 (Vì x8 và (-x)8 đều là số nguyên dương)⇒M=\(\text{​​}\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9-z^9\right)\left(z^{10}-x^{10}\right)=\dfrac{3}{4}\)

Tương tự với y=-z và z=-x

Vậy M=\(\dfrac{3}{4}\)

8 tháng 1 2018

a) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}

b) Đk xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)

Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}

c) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)

Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}

d) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)

Vậy S={(0,4;-4)}

e) ĐKXĐ : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....