K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2022

\(mx-x-m+2=0\)

\(x\left(m-1\right)=m-2\)

Nếu m=1 ⇒ \(0x=-1\) (vô nghiệm)

Nếu m≠1 ⇒ \(x=\dfrac{m-2}{m-1}\)

Vậy ...

5 tháng 6 2021

cái o kia bị lỗi mọi người bỏ đi

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow-2x+2mx-2=0\)

\(\Leftrightarrow2\left(mx-x-1\right)=0\)

\(\Leftrightarrow mx-x-1=0\)

\(\Leftrightarrow x\left(m-1\right)=1\)

\(\Leftrightarrow x=\frac{1}{m-1}\)

\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)

Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm

4 tháng 5 2018

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow2\left(m-1\right)x=2\)

\(\Leftrightarrow x=\frac{2}{m-1}\)

Vì \(2>0\)

\(\Rightarrow m-1>0\)

\(\Rightarrow m>1\)

Sửa đề; Tìm m Để cho phương trình có nghiệm không âm

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

=>\(2x^2-2x+mx-m-2x^2+mx+m-2=0\)

=>x(2m-2)-2=0

=>x(2m-2)=2

Để phương trình có nghiệm không âm thì 2m-2<0

=>m<1

16 tháng 5 2022

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx-2=0\)

\(\Leftrightarrow-2x+2mx-m-2=0\)

\(\Leftrightarrow2x\left(m-1\right)=m+2\)

\(\Leftrightarrow x=\dfrac{m+2}{2\left(m-1\right)}\)

Để phương trình có nghiệm là 1 số không âm thì:

\(\left\{{}\begin{matrix}m\ne1\\\dfrac{m+2}{2\left(m-1\right)}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+2\ge0\\2\left(m-1\right)\ge0\end{matrix}\right.hay\left\{{}\begin{matrix}m+2\le0\\2\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-2\\m>1\end{matrix}\right.hay\left\{{}\begin{matrix}m\le-2\\m< 1\end{matrix}\right.\)

\(\Leftrightarrow m>1\) hay \(m\le-2\).

-Vậy \(m>1\) hay \(m\le-2\) thì phương trình có nghiệm là 1 số không âm.

8 tháng 4 2021

Thay x = -1 vào phương trình (2x - m)(x + 1) - \(2x^2\) - mx + m - 4 = 0 ta có:

(2.(-1) - m)(-1 + 1) - \(2.\left(-1\right)^2\) - m.(-1) + m - 4=0

⇔ (-2 - m).0 - 2 + m + m - 4 = 0

⇔ 2m - 6 = 0

⇔ 2( m - 3) = 0

⇔ m - 3 = 0

⇔ m = 3

Vậy m = 3

8 tháng 4 2021

(2x-m)(x+1)-2x2-mx+m-4=0

\(\Leftrightarrow\)2x2+2x-mx-m-2x2-mx+m-4=0

\(\Leftrightarrow\)-2mx-4=0

\(\Leftrightarrow\)-2mx=4

Thay x=-1 vào phương trình, ta có:

-2m(-1)=4

\(\Leftrightarrow\)2m=4

\(\Leftrightarrow\)m=2

NV
30 tháng 1 2022

\(\Delta=9-4m>0\Rightarrow m< \dfrac{9}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)

\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)

\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{\left(x_1^2+1\right)\left(x_2^2+1\right)}=27\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\sqrt{\left(x_1x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}=25\)

\(\Leftrightarrow9-2m+2\sqrt{m^2+9-2m+1}=25\)

\(\Leftrightarrow\sqrt{m^2-2m+10}=m+8\left(m\ge-8\right)\)

\(\Leftrightarrow m^2-2m+10=m^2+16m+64\)

\(\Rightarrow m=-3\) (thỏa mãn)

30 tháng 1 2022

Pt trên có a=1, b=5, c=-3m+2

\(\Delta=b^2-4ac=25-4\cdot1\cdot\left(-3m+2\right)=17+12m\)

Để pt có hai nghiệm phân biệt thì \(\Delta>0\)<=> 17+12m >0  <=>m> 17/12

Theo hệ thức Viet, ta có:

\(\hept{\begin{cases}x_1+x_2=-5\\x_1\cdot x_2=-3m+2\end{cases}}\)

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1\cdot x_2=25-4\left(-3m+2\right)=17+12m=10\)

=> 12m = -7      <=>m=-7/12 (thỏa đkxđ)

Vậy với m=-7/12 thì phương trình có hai nghiệm x1, x2 thỏa (x1 - x2)^2 =10

16 tháng 1

Ta có pt: \(mx^2-3\left(m+1\right)x+m^2-13m-4=0\)

Do pt có nghiệm là x = -2 nên thay vào pt ta có: 

\(m\cdot\left(-2\right)^2-3\left(m+1\right)\cdot-2+m^2-13m-4=0\)

\(\Leftrightarrow4m+6\left(m+1\right)+m^2-13m-4=0\)

\(\Leftrightarrow6m+6+m^2-9m-4=0\)

\(\Leftrightarrow m^2-3m+2=0\)

\(\Delta=\left(-3\right)^2-4\cdot1\cdot2=1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{3+\sqrt{1}}{2}=2\\m_2=\dfrac{3-\sqrt{1}}{2}=1\end{matrix}\right.\)

Nếu m = 1 thì pt là: 

\(x^2-3\left(1+1\right)x+1^2-13\cdot1-4=0\)

\(\Leftrightarrow x^2-6x-16=0\)

Theo vi-et: \(x_1+x_2=-\dfrac{-6}{1}\Rightarrow x_2=6-x_2=8\) 

Nếu m = 2 thì pt là:

\(2x^2-3\cdot\left(2+1\right)x+2^2-13\cdot2-4=0\)

\(\Leftrightarrow2x^2-9x-26=0\)  

Theo vi-et: \(x_1+x_2=-\dfrac{-9}{2}\Leftrightarrow x_2=\dfrac{9}{2}+2=\dfrac{13}{2}\)

16 tháng 1

còn một nghiệm nữa của x :v

 

a Để phương trình (1) là pt bậc nhất 1 ẩn thì m-2<>0

=>m<>2

b: 3x+7=2(x-1)+8

=>3x+7=2x-2+8=2x+6

=>x=-1

Thay x=-1 vào (1), ta được:

2(m-2)*(-1)+3=3m-13

=>-2m+2+3=3m-13

=>-5m=-13-2-3=-15-3=-18

=>m=18/5