K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

Trên BC lấy điểm D sao cho ^DAB = 300

^A = 1800 - (^B + ^C) = 750

Do đó D nằm trên cạnh BC và ^DAC = 750 - 300 = 450

Vẽ BE vuông góc AD tại E, CF vuông góc AD tại F

Ta có AB = 2BE và AC = \(\sqrt{2}\)CF

Do đó AB + \(\sqrt{2}\)AC = 2BC <=> BE + CF = BC <=> BE + CF = BD + CD

Mà BE \(\le\)BD và CF \(\le\)CD. Do vậy các dấu "=" xảy ra 

<=> E, F, D trùng nhau <=> AD vuông góc BC

Do vậy ^B = 900 - 300 = 600 ; ^C = 900 - 450 = 450

15 tháng 3 2018

De cho gon dat ^BAC = A = 75°; ^ABC = B; ^ACB = C; BC = a; CA = b; AB = c 
cosA = cos75° = cos(45° + 30°) = cos45°cos30° - sin45°sin30° = ( √6 - √2)/4 
Theo gia thiet vs theo dinh ly hs cosin 
{ c + b√2 = 2a (1) 
{ a² = b² + c² - 2bc.cosA 
<=> 
{ 2b² + c² + 2√2bc = 4a² 
{ 4b² + 4c² - 2(√6 - √2)bc = 4a² 
Tru 2 pt cho nhau : 
2b² + 3c² - 2√6bc = 0 <=> (√2b - √3c)² = 0 <=> √2b - √3c = 0 
<=> √2sinB - √3sinC = 0 (theo dinh ly hs sin) 
<=> sinC = √2.sinB/√3 (1) 
Mat khac : 
C = 105° - B <=> sinC = sin(105° - B) = sin105°cosB - cos105°sinB (2) 
voi sin105° = sin75° = √(1 - cos²75°) = (2 + √3)/4 (3) 
cos105° = - cos75° = (√2 - √6)/4 (4) 
Thay (1); (3); (4) vao (2) rut gon ta co : 
tanB = (3 + 2√3)/(√6 + √2) = (√6 + 3√2)/4 
=> B; C 

15 tháng 3 2018

A B C D E

Về phía ngoài của \(\Delta\)ABC vẽ \(\Delta\)ACD vuông cân tại C.

Trên nửa mặt phẳng bờ AD không chứa B và C vẽ \(\Delta\)ADE đều.

Dễ dàng tính được: \(\widehat{BAC}=180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-105^0=75^0\)

Do \(\Delta\)ACD vuông cân tại C => \(\widehat{CAD}=45^0\)\(\Delta\)ADE đều => \(\widehat{DAE}=60^0\)

=> \(\widehat{ABC}+\widehat{CAD}+\widehat{DAE}=75^0+45^0+60^0=180^0\)

=> 3 điểm B;A;E là 3 điểm thẳng hàng => \(AB+AE=BE\)(1)

Xét \(\Delta\)ACD: \(\widehat{ACD}=90^0;AC=CD\)=> \(AD^2=AC^2+CD^2=2.AC^2\)(ĐL Pytago)

=> \(AD=\sqrt{2}.AC\). Mà \(\Delta\)ADE đều => AD=AE\(\Rightarrow AE=\sqrt{2}.AC\)(2)

Từ (1) và (2) => \(BE=AB+AC.\sqrt{2}\).

Lại có: \(AB+AC.\sqrt{2}=2BC\)=> \(BE=2.BC\)

Ta thấy: EA=ED; CA=CD => E và C thuộc đường trung trực của AD => EC\(\perp\)AD (3)

=> \(\widehat{AEC}=30^0\)hay \(\widehat{BEC}=30^0\)

Xét \(\Delta\)ECB có: \(\widehat{BEC}=30^0\)\(BE=2.BC\)=> \(\Delta\)ECB vuông tại C hay EC\(\perp\)BC  (4)

Từ (3) và (4) => AD // BC => \(\widehat{BCA}=\widehat{CAD}\)(So le trong). Mà \(\widehat{CAD}=45^0\)\(\Rightarrow\widehat{BCA}=45^0.\)

Vậy \(\widehat{BCA}=45^0\).

.

30 tháng 8 2020

Đối với lp 9 thì cần cm định lí cos vs sin nữa cô ơi

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Trần Quốc Khanh: ừ ha. Mà định lý sin và cos thì nổi tiếng quá rồi. Cách chứng minh có thể tham khảo trên google =)))

NV
23 tháng 8 2021

\(\dfrac{B}{C}=\dfrac{4}{3}\Rightarrow B=\dfrac{4C}{3}\)

\(B+C=180^0-A=105^0\Rightarrow C+\dfrac{4C}{3}=105^0\Rightarrow C=45^0\) \(\Rightarrow B=60^0\)

Kẻ đường cao AD ứng với BC (do 2 góc B và C đều nhọn nên D nằm giữa B và C)

Trong tam giác vuông ABD:

\(sinB=\dfrac{AD}{AB}\Rightarrow AD=AB.sinB=10,6.sin60^0\approx9,2\left(cm\right)\)

\(cosB=\dfrac{BD}{AB}\Rightarrow BD=AB.cosB=10,6.cos60^0=5,3\left(cm\right)\)

Trong tam giác vuông ACD:

\(tanC=\dfrac{AD}{CD}\Rightarrow CD=AD.tanC=9,2.tan45^0=9,2\left(cm\right)\)

\(sinC=\dfrac{AD}{AC}\Rightarrow AC=\dfrac{AD}{sinC}=\dfrac{9,2}{sin45^0}\approx13\left(cm\right)\)

\(BC=BD+CD=5,3+9,2=14,5\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AD.BC=\dfrac{1}{2}.9,2.14,5=66,7\left(cm^2\right)\)

NV
23 tháng 8 2021

undefined

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm. a) Tính góc B và C, và các tỉ số lượng giác của chúng nó. b*) Tính độ dài các cạnh BC, AB và AC. Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc...
Đọc tiếp

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm.

a) Tính góc B và C, và các tỉ số lượng giác của chúng nó.

b*) Tính độ dài các cạnh BC, AB và AC.

Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc vuông và đường cao trong tam giác vuông để tính.

c) Tính độ dài các cạnh AH và BH.

d) Hãy chứng minh rằng: Cả ba tam giác vuông ABC, HBA và HAC đồng dạng với nhau.

e*) Chứng minh rằng: \(\dfrac{\sin\widehat{HAC}}{\cos\widehat{HBA}}\div\dfrac{\tan\widehat{HAC}}{\cot\widehat{ABC}}=\dfrac{csc^2\widehat{ABC}}{sec^2\widehat{ABC}\cdot\cot\widehat{HBA}}\)

Gợi ý:

1. Secant - sec α nghịch đảo với cos α

2. Cosecant - csc α nghịch đảo với sin α

0
17 tháng 9 2023

Ta có: I là giao điểm của hai đường phân giác góc A và góc B nên suy ra: CI là đường phân giác của góc C.

Vậy \(\widehat {ICA} = \widehat {ICB}\) ( tính chất tia phân giác của một góc).

Đáp án: A. \(\widehat {ICA} = \widehat {ICB}\).

25 tháng 9 2023

Tham khảo:

 

a) Áp dụng hệ quả của định lí cosin, ta có:

 \(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\\ \Rightarrow \left\{ \begin{array}{l}\cos A = \frac{{{{10}^2} + {{13}^2} - {8^2}}}{{2.10.13}} = \frac{{41}}{{52}} > 0;\\\cos B = \frac{{{8^2} + {{13}^2} - {{10}^2}}}{{2.8.13}} = \frac{{133}}{{208}} > 0\\\cos C = \frac{{{8^2} + {{10}^2} - {{13}^2}}}{{2.8.10}} =  - \frac{1}{{32}} < 0\end{array} \right.\end{array}\)

\( \Rightarrow \widehat C \approx 91,{79^ \circ } > {90^ \circ }\), tam giác ABC có góc C tù.

b) 

+) Áp dụng định lí cosin trong tam giác ACM, ta có:

\(\begin{array}{l}A{M^2} = A{C^2} + C{M^2} - 2.AC.CM.\cos C\\ \Leftrightarrow A{M^2} = {8^2} + {5^2} - 2.8.5.\left( { - \frac{1}{{32}}} \right) = 91,5\\ \Rightarrow AM \approx 9,57\end{array}\)

+) Ta có: \(p = \frac{{8 + 10 + 13}}{2} = 15,5\).

Áp dụng công thức heron, ta có: \(S = \sqrt {p(p - a)(p - b)(p - c)}  = \sqrt {15,5.(15,5 - 8).(15,5 - 10).(15,5 - 13)}  \approx 40\)

+) Áp dụng định lí sin, ta có:

\(\frac{c}{{\sin C}} = 2R \Rightarrow R = \frac{c}{{2\sin C}} = \frac{{13}}{{2.\sin 91,{{79}^ \circ }}} \approx 6,5\)

c) 

Ta có: \(\widehat {BCD} = {180^ \circ } - 91,{79^ \circ } = 88,{21^ \circ }\); \(CD = AC = 8\)

Áp dụng định lí cosin trong tam giác BCD, ta có:

\(\begin{array}{l}B{D^2} = C{D^2} + C{B^2} - 2.CD.CB.\cos \widehat {BCD}\\ \Leftrightarrow B{D^2} = {8^2} + {10^2} - 2.8.10.\cos 88,{21^ \circ } \approx 159\\ \Rightarrow BD \approx 12,6\end{array}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Tam giác BDC vuông tại C nên \(\sin \widehat {BDC} = \frac{{BC}}{{BD}} = \frac{a}{{2R}}.\)

b)

TH1: Tam giác ABC có góc A nhọn

\(\widehat {BAC} = \widehat {BDC}\) do cùng chắn cung nhỏ BC.

\( \Rightarrow \sin \widehat {BAC} = \sin \widehat {BDC} = \frac{a}{{2R}}.\)

TH2: Tam giác ABC có góc A tù

  

\(\widehat {BAC} + \widehat {BDC} = {180^o}\) do ABDC là tứ giác nội tiếp (O).

\( \Rightarrow \sin \widehat {BAC} = \sin ({180^o} - \widehat {BAC}) = \sin \widehat {BDC} = \frac{a}{{2R}}.\)

Vậy với góc A nhọn hay tù ta đều có \(2R = \frac{a}{{\sin A}}.\)

b) Nếu tam giác ABC vuông tại A thì BC là đường kính của (O).

Khi đó ta có: \(\sin A = \sin {90^o} = 1\) và \(a = BC = 2R\)

Do đó ta vẫn có công thức: \(2R = \frac{a}{{\sin A}}.\)

7 tháng 9 2023

C A B D

Hình vẽ chỉ mang tính chất minh hoạ thôi nha bạn.

Trên tia đối của AB lấy điểm D sao cho \(BD\text{=}BC\) 

Do đó : 

Ta có : tam giác BDC cân tại B 

            \(AD\text{=}DB+AB\text{=}BC+AB\text{=}3AB\)

\(\Rightarrow\widehat{ABC}\text{=}\widehat{BDC}+\widehat{BCD}\text{=}2\widehat{BCD}\)

Mà : \(\widehat{B}\text{=}2\widehat{C}\) nên \(\widehat{B}\text{=}\widehat{DCA}\)

Xét \(\Delta BAC\) và \(\Delta CAD\) có :

           \(\widehat{A}:gócchung\)

           \(\widehat{B}\text{=}\widehat{ACD}\left(cmt\right)\)

\(\Rightarrow\Delta BAC\sim\Delta CAD\left(g-g\right)\)

\(\Rightarrow\dfrac{AB}{AC}\text{=}\dfrac{AC}{AD}\) \(\Rightarrow AC^2\text{=}AB.AD\)

Mà \(AD\text{=}3AB\) \(\Rightarrow AC^2\text{=}3AB^2\)

Ta có : \(BC^2\text{=}4AB^2\)

Xét tam giác ABC có : \(AB^2+AC^2\text{=}AB^2+3AB^2\text{=}4AB^2\text{=}BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A

Kết hợp với gt của đề bài : \(\Rightarrow\widehat{A}\text{=}90^o;\widehat{C}\text{=}30^o;\widehat{B}\text{=}60^o\).

8 tháng 10 2023

Cảm ơn.