K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

Xét tứ giác DHEC có 

\(\widehat{HDC}\) và \(\widehat{HEC}\) là hai góc đối

\(\widehat{HDC}+\widehat{HEC}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: DHEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: Xét tứ giác BDHF có \(\widehat{BDH}+\widehat{BFH}=90^0+90^0=180^0\)

=>BDHF là tứ giác nội tiếp

Xét tứ giác AFDC có \(\widehat{AFC}=\widehat{ADC}=90^0\)

nên AFDC là tứ giác nội tiếp

Sửa đề; CEHD

Xét tứ giác CEHD có

\(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

=>CEHD là tứ giác nội tiếp

Xét tứ giác ABDE có \(\widehat{AEB}=\widehat{ADB}=90^0\)

nên ABDE là tứ giác nội tiếp

b: Ta có: \(\widehat{FDH}=\widehat{FBH}\)(FBDH là tứ giác nội tiếp)

\(\widehat{EDH}=\widehat{ECH}\)(ECDH là tứ giác nội tiếp)

mà \(\widehat{FBH}=\widehat{ECH}\left(=90^0-\widehat{FAC}\right)\)

nên \(\widehat{FDH}=\widehat{EDH}\)

=>DH là phân giác của góc EDF

13 tháng 3 2022

Xét tứ giác ABDE:

\(\widehat{AEB}=90^o\left(AE\perp BE\right).\\ \widehat{ADB}=90^o\left(AD\perp BD\right).\\ \Rightarrow\widehat{AEB}=\widehat{ADB}.\)

Mà 2 đỉnh E, D kề nhau, cùng nhìn cạnh AB.

\(\Rightarrow\) Tứ giác ABDE nội tiếp (dhnb).

Xét tứ giác HDCE:

\(\widehat{HEC}=90^o\left(DE\perp EC\right).\\ \widehat{HDC}=90^o\left(HD\perp DC\right).\\ \Rightarrow\widehat{HEC}+\widehat{HDC}=180^o.\)

Mà 2 góc này ở vị trí đối nhau.

\(\Rightarrow\) Tứ giác HDCE nội tiếp (dhnb).

Tứ giác ABDE nội tiếp (cmt).

\(\Rightarrow\widehat{EBD}=\widehat{BAD}.\) 

Xét \(\Delta DBH\) và \(\Delta DAC:\)

\(\widehat{BDH}=\widehat{ADC}\left(=90^o\right).\)

\(\widehat{HBD}=\widehat{CAD}\left(\widehat{EBD}=\widehat{BAD}\right).\)

\(\Rightarrow\Delta DBH\sim\Delta DAC\left(g-g\right).\)

\(\Rightarrow\dfrac{DB}{DA}=\dfrac{DH}{DC}.\\ \Rightarrow DB.DC=DH.DA.\)

17 tháng 3 2022

kèm hình luôn được không bạn ơi

a: góc AEB=góc ADB=90 độ

=>AEDB nội tiếp

b,c: M ở đâu vậy bạn?

góc AEB=góc ADB=90 độ

=>AEDB nội tiếp

góc CDH+góc CEH=180 độ

=>CEHD nội tiếp

23 tháng 2 2022

a) vì AD vuông góc BC => ADC = ADB =90 

BE vuông góc AC => AEB = BEC =90 

Xét tứ giác ABDE có 

AEB = ADB =90 mà E và D là 2 đỉnh kề => tứ giác nt ( dhnb) 

=> CAD = CBH (góc nt chắn ED) (1)
mà H đối xứng với I qua D => D là trung điểm => BD là trung tuyến của HI

ta lại có AD vuông góc BC tại D => BD vuông góc với HI ( H,I thuộc AD) => BD là đường cao của HI 

xét tam giác BHI có 

BD là trung tuyến của HI

BD là đường cao của HI 

=> tam giác cân => BD là pg góc B = > IBC =CBH (2) 

từ 1 và 2 => CAD = CBI 

b) Xét tam giác AMI và tam giác ADB có 

góc A chung 

ADB = AMI =90 

=> tam giác đồng dạng (gg) => ABD = AIM (2 góc tư) (3)

Gọi GD của CH và AB là F vì 2 đường cao AD và BE cắt nhau tại H => CH là đường cao => CF là đường cao => CF vuông góc AB tại F => CFB =90 

xét tam giác CHD và tam giác CBF có 

góc C chung 

góc ADC = góc CFB =90 

=> đồng dạng (gg) 

=> CHD=CBA (2 góc tư) (4)

ta lại có vì CD vuông góc với HI

CD là trung tuyến của HI => tam giác CHI cân tại C => AIC = CHD (tc) (5)

từ 3-4-5 => AIM = AIC