cmr nếu p và\(p^2+2\)là 2 số nguyên tố thì\(p^3+2\)là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Mình nghĩ đề là \(p^3+2\) mới đúng chứ nhỉ?
Ta nhận xét được:
Mọi số nguyên tố lớn hơn 3 thì chia cho 3 đề có dạng: \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\left(k\inℕ^∗\right)\)
\(\orbr{\begin{cases}p=3k+1\Leftrightarrow p^2+2=9k^2+6k+3⋮3\\p=3k+2\Leftrightarrow p^2+2=9k^2-6k+6⋮3\end{cases}}\)
Vì p là số nguyên tố nên \(p\ge2\) khi đó trong cả hai trường hợp thì \(p^2+2>3\) và \(⋮3\)
\(\Rightarrow p^2+2\) là hợp số
\(\Rightarrow p^2+2\) là số nguyên tố khi \(p=3\) (Lúc này \(p^2+2=11\) là số nguyên tố)
\(\Rightarrow p^3+2=27+2=29\) là số nguyên tố
Vậy nếu \(p\) và \(p^2+2\) là số nguyên tố thì \(p^3+2\) cũng là số nguyên tố.
neu p khong chia het cho 3 thi p2 chia 3 du 1 suy ra p2 +8 chia het cho 3 (trai gia thiet p2 +8 nguyen to)
vay p phai chia het cho 3, ma p nguyen to nen p=3 . suy ra p2 +2=11 la so nguyen to
tuong tu, o cau b ta cung cm duoc p=3
Lời giải:
-Nếu $p$ không chia hết cho $3\Rightarrow p\geq 2$
Ta biết rằng mọi số chính phương không chia hết cho $3$ thì chia $3$ dư $1$. Do đó $p^2+2\equiv 0\pmod 3$. Suy ra để $p^2+2$ là số nguyên tố thì $p^2+2=3\rightarrow p=1$ (vô lý)
Vậy $p$ thỏa mãn đề bài phải chia hết cho $3$, hay $p=3$. Thử vào $p^2+2=11,p^3+2=29\in\mathbb{P}$ nên ta có đpcm
p là số nguyên tố lớn hơn 3 => p có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N*)
+) Nếu = 3k + 1 => p+2 = 3k + 3 = 3(k + 1) là hợp số => Loại
Vậy p = 3k + 2. Vì p nguyên tố nên k lẻ (nếu k chẵn thì 3k + 2 chẵn)
=> p + (p + 2) = 3k + 2 + (3k + 2 + 2) = 6k + 6 = 6.(k + 1) mà k + 1 chia hết cho 2 do k lẻ
Nên 6(k + 1) chia hết cho 6.2 = 12
Vậy p + (p + 2) chia hết cho 12
Nếu p=2 thì p^2+2=6 không phải là số nguyên tố
Nếu p=3 thì p^2+2=11 và p^3+2=29 LÀ SỐ NGUYÊN TỐ
Nếu p nguyên tố lớn hơn 3 thì p^2 có dạng 3k+1, suy ra p^2+2=3k+3 chia hết cho 3, trái với giả thiết.
VẬY p=3.