K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2023

a.

\(DH\perp AB\left(gt\right)\Rightarrow\widehat{DHB}=90^0\Rightarrow D;H;B\) cùng thuộc đường tròn đường kính DB

\(\widehat{AEB}=90^0\) (góc nội tiếp chắn nửa đường tròn (O)) \(\Rightarrow\widehat{DEB}=90^0\)

\(\Rightarrow D;E;B\) cùng thuộc đường tròn đường kính DB

\(\Rightarrow\) Tứ giác BHDE nội tiếp đường tròn đường kính DB

b.

\(\widehat{ACB}=90^0\) (góc nội tiếp chắn nửa đường tròn (O))

\(\Rightarrow\widehat{ACH}=\widehat{ABC}\) (cùng phụ \(\widehat{BAC}\))

Mà \(\widehat{ABC}=\widehat{AEC}\) (cùng chắn cung AC của (O)

\(\Rightarrow\widehat{ACH}=\widehat{AEC}\)

Xét hai tam giác ADC và ACE có: \(\left\{{}\begin{matrix}\widehat{ACH}=\widehat{AEC}\left(cmt\right)\\\widehat{CAD}\text{ chung}\end{matrix}\right.\)

\(\Rightarrow\Delta ADC\sim\Delta ACE\left(g.g\right)\Rightarrow\dfrac{AD}{AC}=\dfrac{CD}{EC}\Rightarrow AD.EC=CD.AC\)

c.

Cũng theo cmt \(\Delta ADC\sim\Delta ACE\Rightarrow\dfrac{AC}{AE}=\dfrac{AD}{AC}\Rightarrow AD.AE=AC^2\)

Áp dụng hệ thức lượng trong tam giác vuông ABC với đường cao CH:

\(BC^2=BH.BA\)

\(\Rightarrow AD.AE+BH.BA=AC^2+BC^2=AB^2=2022^2\)

NV
2 tháng 4 2023

loading...

NV
22 tháng 4 2023

Đặt chu vi COH là \(P=OC+OH+CH\)

Ta có:

\(P=OC+OH+CH\le OC+\sqrt{2\left(OH^2+CH^2\right)}=OC+\sqrt{2OC^2}=OC\left(1+\sqrt{2}\right)=R\left(1+\sqrt{2}\right)\)

Dấu "=" xảy ra khi \(OH=CH\Rightarrow\Delta OCH\) vuông cân tại H

\(\Rightarrow\widehat{COH}=45^0\) hay C là điểm nằm trên cung AB sao cho OC hợp với AB 1 góc 45 độ

//Phía trên sử dụng BĐT \(a+b\le\sqrt{2\left(a^2+b^2\right)}\) để đánh giá

a: góc AEB=1/2*180=90 dộ

góc DHB+góc DEB=180 độ

=>DHBE nội tiếp

1 tháng 7 2021

a) Vì AB là đường kính \(\Rightarrow\angle ANB=90\)

\(\Rightarrow\angle FNB+\angle FCB=90+90=180\Rightarrow BCFN\) nội tiếp

b) Vì AB là đường kính \(\Rightarrow\angle ADB=90\) 

Xét \(\Delta ACE\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle ADB=\angle ACE=90\\\angle BAEchung\end{matrix}\right.\)

\(\Rightarrow\Delta ACE\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AB}\Rightarrow AD.AE=AB.AC\)

undefined

a: góc BNA=1/2*180=90 độ

góc FNB+góc FCB=180 độ

=>FCBN nội tiếp

b: góc ADB=1/2*180=90 độ

Xét ΔADB vuông tạiD và ΔACE vuông tại C có

góc A chung

=>ΔADB đồng dạng với ΔACE
=>AD/AC=AB/AE

=>AC*AB=AD*AE

c: Xét ΔEAB có

EC,AN là đường cao

EC cắt AN tại F

=>F là trực tâm

=>BF vuông góc AE

mà BD vuông góc AE

nên B,F,D thẳng hàng

A,D,N,B cùng thuộc (O)

nên ADNB nội tiếp

=>góc ADN+góc ABN=180 độ

=>góc EDN=góc EBA

A,D,N,B cùng thuộc (O)

nên ADNB nội tiếp

=>góc ADN+góc ABN=180 độ

=>góc EDN=góc EBA

a: góc EHB+góc EDB=180 độ

=>BDHE nội tiếp

b: Xét ΔACE và ΔADC có

góc ACE=góc ADC

góc CAE chung

=>ΔACE đồng dạng với ΔADC

=>AC^2=AE*AD