K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: góc OMP=góc ONP=90 độ

=>OMNP nội tiếp

2: Xet ΔCOM vuông tại O và ΔCND vuôngtại N có

góc OCM chung

=>ΔCOM đồng dạngvới ΔCND

=>CO/CN=CM/CD

=>CM*CN=CO*CD=2R^2

1 tháng 7 2021

a) Vì AB là đường kính \(\Rightarrow\angle ANB=90\)

\(\Rightarrow\angle FNB+\angle FCB=90+90=180\Rightarrow BCFN\) nội tiếp

b) Vì AB là đường kính \(\Rightarrow\angle ADB=90\) 

Xét \(\Delta ACE\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle ADB=\angle ACE=90\\\angle BAEchung\end{matrix}\right.\)

\(\Rightarrow\Delta ACE\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AB}\Rightarrow AD.AE=AB.AC\)

undefined

a: góc BNA=1/2*180=90 độ

góc FNB+góc FCB=180 độ

=>FCBN nội tiếp

b: góc ADB=1/2*180=90 độ

Xét ΔADB vuông tạiD và ΔACE vuông tại C có

góc A chung

=>ΔADB đồng dạng với ΔACE
=>AD/AC=AB/AE

=>AC*AB=AD*AE

c: Xét ΔEAB có

EC,AN là đường cao

EC cắt AN tại F

=>F là trực tâm

=>BF vuông góc AE

mà BD vuông góc AE

nên B,F,D thẳng hàng

A,D,N,B cùng thuộc (O)

nên ADNB nội tiếp

=>góc ADN+góc ABN=180 độ

=>góc EDN=góc EBA

A,D,N,B cùng thuộc (O)

nên ADNB nội tiếp

=>góc ADN+góc ABN=180 độ

=>góc EDN=góc EBA

31 tháng 5 2021

1) Vì AB là đường kính \(\Rightarrow\angle ADB=90\) mà \(\angle ECB=90\Rightarrow BCDE\) nội tiếp

2) Vì \(\left\{{}\begin{matrix}EF\bot AB\\AF\bot EB\end{matrix}\right.\Rightarrow F\) là trực tâm tam giác EAB \(\Rightarrow BF\bot AE\)

mà \(BD\bot AE\left(\angle BDA=90\right)\Rightarrow B,F,D\) thẳng hàng

Ta có: \(\angle FNB+\angle FCB=90+90=180\Rightarrow FNBC\) nội tiếp

Xét \(\Delta AFC\) và \(\Delta ABN:\) Ta có: \(\left\{{}\begin{matrix}\angle ACF=\angle ANB=90\\\angle NABchung\end{matrix}\right.\)

\(\Rightarrow\Delta AFC\sim\Delta ABN\left(g-g\right)\Rightarrow\dfrac{AF}{AC}=\dfrac{AB}{AN}\Rightarrow AF.AN=AB.AC\)

Tương tự \(\Rightarrow BF.BD=BC.BA\)

\(\Rightarrow AF.AN+BF.BD=AB.AC+AB.BC=AB^2=4R^2\)

3) Gọi G là giao điểm của (AEF) và AB

Ta có: \(\angle FGB=\angle AEF\left(AEFGnt\right)=\angle DBA\left(BCDEnt\right)\Rightarrow\Delta GFB\) cân tại F có \(FC\bot GB\Rightarrow CB=CG\)

mà C,B cố định \(\Rightarrow G\) cố định

Vì AEFG nội tiếp \(\Rightarrow I\in\) trung trực AG mà A,G cố định \(\Rightarrow\) đpcm

3 tháng 4 2022

Sao góc ECB lại =90 ạ 

25 tháng 5 2021

1: Ta có \(\widehat{CDE}=\widehat{CNE}=90^o\) nên tứ giác CDNE nội tiếp đường tròn đường kính CE.

2: Xét tam giác \(BKD\) và tam giác \(EKM\) có: \(\widehat{BKD}=\widehat{EKM}\) (đối đỉnh), \(\widehat{BDK}=\widehat{EMK}\) (= \(90^o\))

Do đó \(\Delta BKD\sim\Delta EKM(g.g)\).

Suy ra \(\dfrac{KB}{KD}=\dfrac{KE}{KM}\Rightarrow KB.KM=KE.KD\).

Do K là trực tâm của tam giác BCE nên C, K, N thẳng hàng.

3: Ta có \(\widehat{FNK}=\dfrac{1}{2}sđ\stackrel\frown{NC}=\widehat{NBC}=90^o-\widehat{BED}=\widehat{NKF}\). Suy ra tam giác NKF cân tại F nên FN = FK. Lại có tam giác ENK vuông tại N nên F là trung điểm của EK.

Vậy ta có đpcm.