K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(=2.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=1\left(1-\frac{1}{101}\right)\)

\(=\frac{100}{101}\)

19 tháng 4 2017

\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{99x101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

21 tháng 3 2018

Đặt \(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)

\(\Rightarrow A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(\Rightarrow A=1-\frac{1}{101}\)

\(\Rightarrow A=\frac{100}{101}\)

21 tháng 3 2018

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\cdot\cdot\cdot\cdot+\frac{2}{99\cdot101}\)

=\(\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\cdot\cdot\cdot\cdot+\frac{2}{99}-\frac{2}{101}\)

=\(2-\frac{1}{101}\)

\(\frac{202}{101}-\frac{1}{101}=\frac{201}{101}\)

17 tháng 4 2019

\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(A=1-\frac{1}{101}\)

\(A=\frac{100}{101}\)

\(B=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(B=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(B=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(B=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(B=\frac{5}{2}.\frac{100}{101}\)

\(B=\frac{250}{101}\)

7 tháng 5 2016

\(H=1^2+3^2+5^2+....+101^2\)

\(H=1^2+2^2+3^3+...+101^2+102^2-\left(2^2+4^4+....+102^2\right)\)

\(H=1+2\left(1+1\right)+3\left(2+1\right)+...+102\left(101+1\right)-2^2\left(1^2+2^2+...+51^2\right)\)

\(H=1+1.2+2+2.3+3+....+101.102+102-2^2\left(1+2\left(1+1\right)+...+51\left(50+1\right)\right)\)

\(H=\left(\left(1+2+...+102\right)+\left(1.2+2.3+...+101.102\right)\right)-2^2\left(1+1.2+2+...+50.51+51\right)\)

Chắc cậu đã biết cách nhân ở bễ 1+2+3+...+102 và cách 1.2+2.3+....+101.102 rồi nhỉ ???? Dạng nhân 3 mỗi vế rồi loại dần ý.

\(H=\left(5253+353702\right)-2^2\left(\left(1+2+...+51\right)+\left(1.2+2.3+...+50.51\right)\right)\)

\(H=358955-4\left(1326+44200\right)=358955-182104=176851\)

Sai thì thôi ha .... nhưng cách đúng rồi đó .... chỉ sợ sai số thôi

6 tháng 4 2017

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{99}-\frac{2}{101}\)

\(=2-\frac{2}{101}=\frac{200}{101}\)

6 tháng 4 2017

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

16 tháng 1 2018

đề sai nha

16 tháng 1 2018

Chúng ta nhóm [1-2]+[3-4]+...=-1+-1+-1=....tu tuc la hanh phuc 

13 tháng 5 2016

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+....+\frac{2}{99\cdot101}\)

\(\frac{2}{1\cdot3}=\frac{3-1}{1\cdot3}=\frac{3}{1\cdot3}-\frac{1}{1\cdot3}=\frac{1}{1}-\frac{1}{3}=1-\frac{1}{3}\)

\(\frac{2}{3\cdot5}=\frac{5-3}{3\cdot5}=\frac{5}{3\cdot5}-\frac{3}{3\cdot5}=\frac{1}{3}-\frac{1}{5}\)

....

\(\frac{2}{99\cdot101}=\frac{101-99}{99\cdot101}=\frac{101}{99\cdot101}-\frac{99}{99\cdot101}=\frac{1}{99}-\frac{1}{101}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)

 

 

13 tháng 5 2016

\(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{99\cdot101}\)

=\(\frac{5}{2}\cdot\frac{2}{1\cdot3}+\frac{5}{2}\cdot\frac{2}{3\cdot5}+\frac{5}{2}\cdot\frac{2}{5\cdot7}+...+\frac{5}{2}\cdot\frac{2}{99\cdot101}\)

=\(\frac{5}{2}\cdot\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right]\)

=\(\frac{5}{2}\cdot\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right]\)

=\(\frac{5}{2}\cdot\left(1-\frac{1}{101}\right)\)

=\(\frac{5}{2}\cdot\frac{100}{101}\)

\(=\frac{250}{101}\)

25 tháng 3 2018

cái này bạn mở sách bồi dưỡng toán ra trang gần cuối là thấy ngay ấy mà

15 tháng 8 2017

1 + 4 + 7 + 97 + 100 

Số số hạng:

  ( 100 - 1 ) : 3 + 1 = 34

Tổng trên có: 

( 100 + 1 ) x 34 : 2 = 1717

   Đáp số: 1717.

Tương tự.

15 tháng 8 2017

1 + 2 + 3 + ... + 100 

Ta có : 1 + 2 + 3 + ... + 100 ( có 100 số hạng )

= (100 + 1) x 100 : 2 = 5050

1 + 3 + 5 + ... + 99 + 101 ( có 51 số hạng )

= (101 + 1) x 51 : 2 = 2601

1 + 4 + 7 + .. + 97 + 100 ( có 34 số hạng )

= (100 + 1) x 34 : 2 = 1717

13 tháng 1 2018

Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha

1, 7A = 7+7^2+7^3+....+7^2008

6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1

=> A = (7^2008-1)/6

Tk mk nha

\(A=1+7+7^2+7^3+...+7^{2007}\)

\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)

\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)

\(\Rightarrow6A=7^{2008}-1\)

\(\Rightarrow A=\frac{7^{2008}-1}{6}\)