giải giúp em câu 2 với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
Áp dụng định lý hàm cosin:
\(b=\sqrt{a^2+c^2-2ac.cosB}=\sqrt{8^2+3^2-2.8.3.cos60^0}=7\)
\(S_{ABC}=\dfrac{1}{2}ac.sinB=\dfrac{1}{2}.8.3.sin60^0=6\sqrt{3}\)
4.
\(\Delta=\left(m+2\right)^2-16>0\Leftrightarrow m^2+4m-12>0\Rightarrow\left[{}\begin{matrix}m>2\\m< -6\end{matrix}\right.\) (1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m-2\\x_1x_2=4\end{matrix}\right.\)
\(x_1+x_2+x_1x_2>1\)
\(\Leftrightarrow-m-2+4>1\)
\(\Rightarrow m< 1\) (2)
Kết hợp (1); (2) ta được \(m< -6\)
\(a,=7\cdot6+15:5=42+3=45\\ b,=6+3\sqrt{5}-6=3\sqrt{5}\)
Bài 4:
\(n_{Ba\left(OH\right)_2}=1.0,1=0,1\left(mol\right)\\ n_{HCl}=1.0,1=0,1\left(mol\right)\\ Ba\left(OH\right)_2+2HCl\rightarrow BaCl_2+2H_2O\\ Vì:\dfrac{0,1}{2}< \dfrac{0,1}{1}\Rightarrow Ba\left(OH\right)_2dư\\ n_{BaCl_2}=n_{Ba\left(OH\right)_2\left(p.ứ\right)}=\dfrac{0,1}{2}=0,05\left(mol\right)\\ n_{Ba\left(OH\right)_2\left(dư\right)}=0,1-0,05=0,05\left(mol\right)\\ \left[OH^-\left(dư\right)\right]=\left[Ba\left(OH\right)_2\left(dư\right)\right]=\dfrac{0,05}{0,1+0,1}=0,25\left(M\right)\\ \left[Cl^-\right]=2.\left[BaCl_2\right]=2.\dfrac{0,05}{0,1+0,2}=0,5\left(M\right)\\ \left[Ba^{2+}\right]=\dfrac{0,25+0,5}{2}=0,375\left(M\right)\)
\(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left(\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{8x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\left(\dfrac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)
\(=\dfrac{x}{\sqrt{x}-3}\)
\(P=-1\Rightarrow\dfrac{x}{\sqrt{x}-3}=-1\Rightarrow x=-\sqrt{x}+3\)
\(\Leftrightarrow x+\sqrt{x}-3=0\)
Đặt \(\sqrt{x}=t\ge0\Rightarrow t^2+t-3=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+\sqrt{13}}{2}\\t=\dfrac{-1-\sqrt{13}}{2}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}=\dfrac{-1+\sqrt{13}}{2}\)
\(\Rightarrow x=\dfrac{7-\sqrt{13}}{2}\) (thỏa mãn)