c/m 1/x+y≤1/4x+1/4y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{4y^2+1}=x-\frac{4xy^2}{4y^2+1};\frac{y}{4x^2+1}=y-\frac{4x^2y}{4x^2+1}\)
Áp dụng BĐT Cauchy ta có :
\(4y^2+1\ge4y;4x^2+1\ge4x\)
\(\Rightarrow x-\frac{4xy^2}{4y^2+1}+y-\frac{4x^2y}{4x^2+1}\ge x-\frac{4xy^2}{4y}+y-\frac{4x^2y}{4x}\)
\(=x+y-2xy=2xy\)
Đến đây ta áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(x+y=4xy\Leftrightarrow\frac{1}{xy}=\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=4\)
\(\Leftrightarrow\frac{1}{xy}\le4\Leftrightarrow2xy\ge\frac{1}{2}\)
\(\Leftrightarrow\frac{x}{4y^2+1}+\frac{y}{4x^2+1}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\4y^2=1\\4x^2=1\end{cases}\Leftrightarrow x=y=\frac{1}{2}}\)
Bạn trên đã chứng minh \(xy\ge\frac{1}{4}\) rồi nên mình xin phép không trình bày
Áp dụng BĐT Cauchy Schwarz ta dễ có:
\(LHS=\frac{x^2}{4xy^2+x}+\frac{y^2}{4x^2y+y}\)
\(\ge\frac{\left(x+y\right)^2}{4xy\left(x+y\right)+\left(x+y\right)}=\frac{\left(x+y\right)^2}{\left(x+y\right)^2+\left(x+y\right)}\)
Ta cần đi chứng minh:
\(\frac{\left(x+y\right)^2}{\left(x+y\right)^2+\left(x+y\right)}\ge\frac{1}{2}\)
\(\Leftrightarrow\left(x+y\right)^2\ge x+y\Leftrightarrow x+y\ge1\)
Điều này là hiển nhiên vì theo AM - GM ta có:\(x+y\ge2\sqrt{xy}=1\)
Vậy ta có đpcm
\(\sum\dfrac{x^4y}{x^2+1}=\sum\dfrac{x^3.\dfrac{1}{z}}{x^2+xyz}=\sum\dfrac{x^2}{z\left(x+yz\right)}=\sum\dfrac{x^2}{xz+1}\)
Áp dụng bất đẳng thức cauchy-schwarz:
\(Vt=\sum\dfrac{x^2}{xz+1}\ge\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+3}\)
mà theo AM-GM: \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}=3\)
hay \(3\le xy+yz+xz\)
do đó \(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\)
Dấu = xảy ra khi x=y=z=1
P/s: Câu này khoai
\(4\left(xy+yz+xz\right)+x+y+z=9\)
Mặt khác ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\Rightarrow xy+yz+xz\le\dfrac{1}{3}\left(x+y+z\right)^2\)
\(\Rightarrow\dfrac{4}{3}\left(x+y+z\right)^2+\left(x+y+z\right)\ge9\)
\(\Leftrightarrow\left[2\left(x+y+z\right)+\dfrac{3}{4}\right]^2\ge\dfrac{441}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}2\left(x+y+z\right)+\dfrac{3}{4}\ge\dfrac{21}{4}\\2\left(x+y+z\right)+\dfrac{3}{4}\le\dfrac{-21}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y+z\ge\dfrac{9}{4}\\x+y+z\le-3\end{matrix}\right.\) \(\Rightarrow\left(x+y+z\right)^2\ge\dfrac{81}{16}\)
Mà \(P=x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\ge\dfrac{81}{16.3}=\dfrac{27}{16}\)
\(\Rightarrow P_{min}=\dfrac{27}{16}\) khi \(x=y=z=\dfrac{3}{4}\)
Lời giải:
a.
$A=20x^3-10x^2+5x-(20x^3-10x^2-4x)$
$=9x=9.15=135$
b.
$B=(5x^2-20xy)-(4y^2-20xy)=5x^2-4y^2$
$=5(\frac{-1}{5})^2-4(\frac{-1}{2})^2=\frac{-4}{5}$
c.
$C=(6x^2y^2-6xy^3)-(8x^3-8x^2y^2)-(5x^2y^2-5xy^3)$
$=-8x^3+9x^2y^2-xy^3$
$=(-2x)^3+(3xy)^2-xy^3$
$=(-2.\frac{1}{2})^3+(3.\frac{1}{2}.2)^2-\frac{1}{2}.2^3$
$=(-1)^3+3^2-4=4$
\(A=x^2+x+2=\left(x^2+x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge0+\frac{7}{4}=\frac{7}{4}.\) Dâu bàng xay ra khi: \(x=\frac{-1}{2}\)
\(B=4x^2-4x-1=\left(4x^2-4x+1\right)-2=\left(2x-1\right)^2-2\ge0-2=-2\Rightarrow B_{min}=-2\) Dâu bàng xay ra: \(x=\frac{1}{2}\)
\(C=x^2+y^2+2x-4y+2=x^2+y^2+2x-4y+5-3=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)-3=\left(x+1\right)^2+\left(y-2\right)^2-3\ge0+0-3=-3\) Dâu bàng xay ra\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Lời giải:
Từ $xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{4x+3y+z}\leq \frac{1}{64}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\frac{1}{x+4y+3z}\leq \frac{1}{64}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\right)\)
\(\frac{1}{3x+y+4z}\leq \frac{1}{64}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\right)\)
Cộng theo vế 3 BĐT trên và thu gọn ta được:
$A\leq \frac{1}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}$
Vậy $A_{\max}=\frac{1}{8}$ khi $x=y=z=3$