K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)

b: a<b

=>-2a>-2b

=>-2a-3>-2b-3

c: =x^2+2xy+y^2+y^2+6y+9

=(x+y)^2+(y+3)^2>=0 với mọi x,y

d: a+3>b+3

=>a>b

=>-5a<-5b

=>-5a+1<-5b+1

NV
29 tháng 6 2019

\(S=\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=\frac{a^2}{ab+2ac}+\frac{b^2}{bc+2ab}+\frac{c^2}{ac+2bc}\)

\(\Rightarrow S\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\)

Dấu "=" xảy ra khi \(a=b=c\)

2 tháng 6 2018

Thế này phải ko? 

\(\left(a+b\right)^2.\frac{a+b}{2}\ge2a\sqrt{b}+2b\sqrt{a}\)

2 tháng 6 2018

  

 ta có: a−√a+14 =(√a−12 )2≥0    (1)

         b−√b+14 =(√b−12 )2≥0(2)

từ (1),(2)=.>a+b−√a−√b+12 ≥0

⇒a+b+12 ≥√a+√b   (3)

Mà  a+b≥2√ab   (BĐT cauchy cho a>0;b>0)    (4)

từ(3),(4) => (a+b)(a+b+12 )≥2√ab(√a+√b)

⇔(a+b)2+a+b2 ≥2a√b+2b√a

=>đpcm

13 tháng 4 2017

Áp dụng BĐT AM-GM ta có:

\(VT=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2\sqrt{a^2b^2}-ab\right)\)

\(=\left(a+b\right)\left(2ab-ab\right)\)

\(=ab\left(a+b\right)=a^2b+ab^2=VP\)

Đẳng thức xảy ra khi \(a=b\)

31 tháng 3 2018

mình ko hiêu bạn ơi

16 tháng 9 2016

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
tuong tu 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
cog lai ta dc 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
mat khc 
a^2+b^2+c^2>=ab+bc+ca 
nen 
a^3/b+b^3/c+c^3/a >=ab+bc+ca 
dau = xay ra khi a=b=c

k nha

10 tháng 4 2018

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
tuong tu 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
cog lai ta dc 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
mat khc 
a^2+b^2+c^2>=ab+bc+ca 
nen 
a^3/b+b^3/c+c^3/a >=ab+bc+ca 
dau = xay ra khi a=b=c

17 tháng 11 2019

Áp dụng BĐT AM-GM với chú ý: \(a+b,b+c,c+a< a+b+c\) với mọi a, b, c >0.

Ta có:\(VT=\Sigma_{cyc}\frac{a}{\sqrt{a\left(a+2b\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+a+2b}{2}}=\Sigma_{cyc}\frac{a}{a+b}>\Sigma_{cyc}\frac{a}{a+b+c}=1\)

qed./.