Tìm x để P đạt GTNN biết P=14-x/4-x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left|x-2\right|\ge x-2\)
\(\left|x-3\right|\ge0\)
\(\left|x-4\right|=\left|4-x\right|\ge4-x\)
\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2\ge0\\x-3=0\\x-4\le0\end{cases}\Rightarrow}x=3\)
Bài 1 :
A đạt GTLN khi \(\frac{5}{4-x}\)đạt GTLN
* Nếu 4 -x > 0 => \(\frac{5}{4-x}\)> 0 (1)
* Nếu 4 -x < 0 => \(\frac{5}{4-x}\)< 0 (2)
Từ (1) và (2) => \(\frac{5}{4-x}\)đạt GTLN khi 4 - x > 0 (a)
- Phân số \(\frac{5}{4-x}\)> 0 có tử là 5 : không đổi nên \(\frac{5}{4-x}\)đạt GTLN khi 4 - x đạt GTNN (b)
- Mà x thuộc Z => 4 - x thuộc Z (c)
- Từ (a), (b), và (c) => 4 - x = 1 => x = 3
Vậy x = 3 thì A có GTLN là \(\frac{5}{4-3}\)= 5
Bài 1:
$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$
$\Leftrightarrow x=4$
Bài 2: $x-\sqrt{x}$
ĐKXĐ: $x\geq 0$
$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$
$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$
$\Leftrightarrow x=\frac{1}{4}$