Cho C=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.........+\frac{1}{2^{100}}.\)
Chứng tỏ: 0 < C < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lời giải của mình nhé:
Giải:
A luôn > 0 (vì các số hạng trong tổng A đều lớn hơn 0)(1)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\\ 2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\\ 2A-A=1-\frac{1}{2^{100}}< 1\)
\(A< 1\)(2)
Từ (1) và (2) \(\Rightarrow0< A< 1\left(đpcm\right)\)
Chúc bạn học tốt!
Phần C đề thiếu
\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)
\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)
\(\Rightarrow4D=3-\frac{203}{3^{100}}\)
\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)
\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{101}}\)
\(2A-A=\frac{1}{2^{101}}-\frac{1}{2}\)
\(\Rightarrow A=\frac{1}{2^{101}}-\frac{1}{2}\)
\(\Rightarrow A>0\) ( đpcm )
Bài này phải làm như thế này nha lần trước tui làm nhầm sorry
Study well
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
Ta có :
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(=>2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(=>2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(=>A=1-\frac{1}{2^{100}}\)
Ta có : \(1>\frac{1}{2^{100}}=>A>1-1=0\)
\(\frac{1}{2^{100}}>0=>1-\frac{1}{2^{100}}< 1-0=1\)
\(=>0< A< 1\)
Chúc bạn học tốt!
Dễ thấy A>0(vì 1/2>0;1/2^2>0;...;1/2^100>0 =>1/2+1/2^2+1/2^3+...+1/2^100>0)
2A=1+2/2^2+2/2^3+...+2/2^100(rút gọn 1 bước)
2A=1+1/2+1/2^2+...+1/2^99
2A-A=(1+1/2+1/2^2+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^99+1/2^100)
A=1-1/2^100<1
Vậy A<1
Cậu tự KL nhé
a)đặt B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
b,c tự làm
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
bạn làm như này nha:
Từ đpcm \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow0=2.\left(\frac{a+b+c}{abc}\right)\)
\(\Leftrightarrow0=a+b+c\)luôn đúng do giả thuyết cho
\(\Rightarrowđpcm\)
các bạn đi ngủ trưa hết rồi
----------------------------------
^ __ ^
C=\(\frac{1}{1.2}\)+\(\frac{1}{2.2}\)+