Tính \(B=\frac{1}{10\cdot9}+\frac{1}{18\cdot13}+\frac{1}{26\cdot17}+.............+\frac{1}{802\cdot405}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{2}{1\cdot5}+\frac{2}{5\cdot9}+\frac{2}{9\cdot13}+\frac{2}{13\cdot17}+\frac{2}{17\cdot21}\)
\(C=\frac{2}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\frac{20}{21}\)
\(=\frac{10}{21}\)
= 7/4.(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + 4/17.21)
= 7/4.(1-1/5+1/5-1/9+1/9-1/13+1/13-1/17+1/17-1/21)
= 7/4.(1-1/21)
= 7/4.20/21 = 5/3
Tk mk nha
Đặt biểu thức bằng A
4/7A=1-1/5+1/5-1/9+...+1/17_1/21
4/7A=1-1/21
4/7A=20/21
A=35/21=5/3
Áp dụng theo dạng toán số ai cập ta có:
4/1.5+4/5.9+4/9.13+4/13.17+4/17.21=1/1-1/5+1/5-1/9+1/9-1/13+1/13-1/17+1/17-1/21=1-1/21 < 1
Vậy tổng đó < 1
Ta có
\(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{17.18}>A=\frac{1}{2.3}+\frac{1}{5.4}+...+\frac{1}{18.19}\)
\(C< =>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{18-17}{17.18}\)\(>A\)
\(C< =>\frac{1}{2}-\frac{1}{18}\)\(>A\)
\(C< =>\frac{4}{9}\)\(>A\left(1\right)\)
Lại có \(C=\frac{4}{9}< \frac{9}{19}=B\left(2\right)\)
Từ (1),(2) => B>A
A=\((\frac{1}{3.8}+\frac{1}{8.13}+...+\frac{1}{33.38})\)
A=\(\frac{1}{5}\left(\frac{5}{3.8}+\frac{5}{8.13}+...+\frac{5}{33.38}\right)\)
A=\(\frac{1}{5}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{33}-\frac{1}{38}\right)\)
A=\(\frac{1}{5}.\left(\frac{1}{3}-\frac{1}{38}\right)\)
A=\(\frac{1}{5}.\frac{35}{114}\)
A=\(\frac{7}{114}\)
B=\((\frac{1}{3.10}+\frac{1}{10.17}+...+\frac{1}{31.38})\)
B=\(\frac{1}{7}\left(\frac{7}{3.10}+\frac{7}{10.17}+...+\frac{7}{31.38}\right)\)
B=\(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{10}+\frac{1}{10}-\frac{1}{17}+...+\frac{1}{31}-\frac{1}{38}\right)\)
B=\(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{38}\right)\)
B=\(\frac{1}{7}.\frac{35}{114}\)
B=\(\frac{5}{114}\)
⇒ \(\frac{A}{B}\)=\(\frac{7}{114}:\frac{5}{114}=\frac{7}{114}.\frac{114}{5}=\frac{7}{5}\)
Vậy \(\frac{A}{B}=\frac{7}{5}\)
A = \(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+....+\frac{1}{33}-\frac{1}{38}\)
=\(\frac{1}{3}-\frac{1}{38}\)
=\(\frac{35}{114}\)
B =\(\frac{1}{3}-\frac{1}{10}+\frac{1}{10}-\frac{1}{17}+...+\frac{1}{31}-\frac{1}{38}\)
=\(\frac{1}{3}-\frac{1}{38}\)
=\(\frac{35}{114}\)
=>tỉ số \(\frac{A}{B}\)= \(\frac{35}{114}:\frac{35}{114}\)=1
ta có: \(B=\frac{1}{10.9}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405}\)
\(=\frac{1}{2}.\left(\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{401.405}\right)\)
\(=\frac{1}{2}.\frac{1}{4}.\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{401.405}\right)\)
\(=\frac{1}{8}.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{17}-...-\frac{1}{401}+\frac{1}{405}\right)\)
\(=\frac{1}{8}.\left(\frac{1}{5}-\frac{1}{405}\right)\)
\(=\frac{1}{8}.\frac{80}{405}=\frac{10}{405}=\frac{2}{81}\)