5555+333=?
kb với mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Ta có công thức: Nếu số hạng là các chữ số n và có m số hạng:
n x [m x 100 + (m - 1) x 101 + (m - 2) x102 + ………. +2 x 10m-2 + 1 x 10m-1]
(Bạn nhớ công thức trên sẽ làm đc bài tập 1 cách dễ dàng)
a, A=2+22+222+2222+...+222...2(10 chữ số 2)
Ta có:
A = 2 + 22 + 222 + 2222 + ... + 2222222222
A = 2 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
A = 2 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
A = 2 . 1234567900 = 2 469 135 800
b, B=3+33+333+3333+...+333...3(10 chữ số 3)
Ta có:
B = 3 + 33 + 333 + 3333 + ... + 3333333333
B = 3 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
B = 3 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
B = 3 . 1234567900 = 3 703 703 700.
c, C=5+55+555+5555+...+555...5(5 chữ số 5)
Ta có:
C = 5 + 55+ 555 + 5555 + ... + 5555555555
C = 5 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
C = 5 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
C = 5 . 1234567900 = 6 172 839 500.
Dài quá đó bạn !
a, Ta có : 222 ≡ 1(mod 13) nên 222^333 ≡ 1 (mod 13)
Và 333^2 ≡ -1 (mod 13) nên 333^222 ≡ -1 (mod 13)
Cộng lại ta có:
222^333 + 333^222 ≡ 0 (mod 13) đpcm
b, 2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7)
5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7)
vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm
( tick đúng cho mink nha)
b, 5555\(\equiv\)4 (mod 7)=>55552222\(\equiv\)42222 (mod 7)(1)
2222\(\equiv\)3 (mod 7)=>2222=-4 (mod 7)=>22225555\(\equiv\)(-4)5555 (mod 7)(2)
Từ (1) và (2)=>55552222+22225555\(\equiv\)42222+45555 (mod 7)
=>55552222+22225555\(\equiv\)42222 (1-43333) (mod 7)
Ta có:43 \(\equiv\)1 (mod 7)
=>(43)1111\(\equiv\)11111 (mod 7)
=>43333\(\equiv\)1 (mod 7)
=>-43333\(\equiv\)-1(mod 7)
=>1-43333\(\equiv\)0 (mod 7)
=> 55552222+22225555\(\equiv\)0 (mod 7)
Vậy 55552222+22225555\(⋮\)7
1111111122222222 + 333 = 1111111122222555
Kb nha, mình đang cần thêm bạn.
Ta có: 2222 đồng dư với 3(mod 7)
=> 22222 đồng dư với 32(mod 7)
=> 22222 đồng dư với 9(mod 7)
=> 22222 đồng dư với 2(mod 7)
=> (22222)3 đồng dư với 23(mod 7)
=> 22226 đồng dư với 8(mod 7)
=> 22226 đồng dư với 1(mod 7)
=> (22226)925 đồng dư với 1925(mod 7)
=> 22225550 đồng dư với 1925(mod 7)
Vì 22222 đồng dư với 2(mod 7)
=>(22222)2 đồng dư với 22(mod 7)
=>22224 đồng dư với 4(mod 7)
=>22224.2222 đồng dư với 4.3(mod 7)
=>22225 đồng dư với 12(mod 7)
=>22225 đồng dư với 5(mod 7)
=>22225.22225550 đồng dư với 5.1(mod 7)
=>22225555 đồng dư với 5(mod 7)
Lại có:
5555 đồng dư với 4(mod 7)
=>55553 đồng dư với 43(mod 7)
=>55553 đồng dư với 64(mod 7)
=>55553 đồng dư với 1(mod 7)
=>(55553)740 đồng dư với 1740(mod 7)
=>55552220 đồng dư với 1(mod 7)
Vì 5555 đồng dư với 4(mod 7)
=>55552 đồng dư với 42(mod 7)
=>55552 đồng dư với 16(mod 7)
=>55552 đồng dư với 3(mod 7)
=>55552.55552220 đồng dư với 3.1(mod 7)
=>55552222 đồng dư với 3(mod 7)
=>22225555+55552222 đồng dư với 4+3(mod 7)
=>22225555+55552222 đồng dư với 7(mod 7)
=>22225555+55552222 đồng dư với 0(mod 7)
=>22225555+55552222 chia hết cho 7
=>ĐPCM
5888 đó
k nha
chúc bạn học giỏi
5555+333=5888