BÀI 1: Cho hình chữ nhật ANCD có AD = 6cm, AB = 8cm và hai đường chéo cắt nhau tại O. Qua D kẻ đường thẳng d vuông góc với DB, d cắt tia BC tại E.
a) CMR : tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc với DE tại H. CMR: DC^2 = CH x DE
c) Gọi K là giao điểm của OE và HC. CMR: K là trung điểm của HC và tinh tỉ số \(\frac{S\Delta EHC}{S\Delta EDB}\)
d) CMR : OE,DC,BH đồng quy
BÀI 2 : Cho tam giác ABC vuông tại A (AB<AC) và trung tuyến AD. Kẻ đường thẳng vuông góc với AD tại D lần lượt cắt AC tại E và AB tại .
a) CMR : \(\Delta DCE\) dồng dạng với \(\Delta DFB\)
b) CMR: \(AE\cdot AC=AB\cdot AF\)
c) Đường cao AH của tam giác ABC cắt EF tại I . CMR: \(\frac{S\Delta AEC}{S\Delta AEF}=\left(\frac{AD}{AI}\right)^2\)