K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 3 2023

\(\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}}=\left(\dfrac{x-1}{\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}.\dfrac{\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\)

5 tháng 9 2023

\(E=\left(\dfrac{x\sqrt{x}}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right)+\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) (ĐK: \(x\ne1;x>0\))

\(E=\left[\dfrac{\left(\sqrt{x}\right)^3-1^3}{x-\sqrt{x}}-\dfrac{\left(\sqrt{x}\right)^3+1^3}{x+\sqrt{x}}\right]+\left[\dfrac{x}{\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right]\left[\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

\(E=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]+\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(E=\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\right)+\dfrac{\left(\sqrt{x}\right)^2-1^2}{\sqrt{x}}\cdot\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(E=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}\cdot\dfrac{2x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(E=\dfrac{2\sqrt{x}}{\sqrt{x}}+\dfrac{2x+2}{\sqrt{x}}\)

\(E=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

5 tháng 9 2023

https://hoc24.vn/cau-hoi/rut-gon-cac-bieu-thuc-sau21-a-leftdfracxsqrtx-1x-1-dfracx-1sqrtx-1right-leftsqrtx-dfracsqrtxsqrtx-1right-22-a-leftdfracxsqrtx.8357393071878

16 tháng 8 2023

\(\left(\dfrac{1}{\sqrt{x}}-x\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)

\(=\left(\dfrac{1}{\sqrt{x}}-\dfrac{x\sqrt{x}}{\sqrt{x}}\right):\left[\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)

\(=\dfrac{1-x\sqrt{x}}{\sqrt{x}}:\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)

\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-\sqrt{x}}\)

\(=-\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=-\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

16 tháng 8 2023

\(\left(\dfrac{1}{\sqrt{x}}-x\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)=\dfrac{1-x\sqrt{x}}{\sqrt{x}}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\left(1-\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{1-x\sqrt{x}}{\sqrt{x}}.\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-\sqrt{x}}=\dfrac{\left(1-x\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{1-x\sqrt{x}}{\sqrt{x}}\)

Ta có: \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right):\left(1-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

31 tháng 8 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne0\\\sqrt{x}+1\ne0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne1\\\sqrt{x}+1\ne0\left(luônđúng\right)\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right):\left(1-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{x-1}-:\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}+1-\sqrt{x}+1\right)\left(\sqrt{x}+1+\sqrt{x}-1\right)}{x-1}:\dfrac{2}{\sqrt{x}+1}\)

\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{2}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

 

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

RÚT GỌN CÁC BIỂU THỨC SAU:21) \(A = \left(\dfrac{x\sqrt{x} + 1}{x - 1} - \dfrac{x - 1}{\sqrt{x} - 1}\right) : \left(\sqrt{x} + \dfrac{\sqrt{x}}{\sqrt{x} - 1}\right) \)22) \(A = \left(\dfrac{x}{\sqrt{x} - 1} - \sqrt{x}\right) : \left(\dfrac{\sqrt{x} + 1}{\sqrt{x}} - \dfrac{1}{1 - \sqrt{x}} + \dfrac{2 - x}{x - \sqrt{x}}\right)\)23) \(A = \left(\dfrac{\sqrt{x} - 4}{x - 2\sqrt{x}} - \dfrac{3}{2 - \sqrt{x}}\right) : \left(\dfrac{\sqrt{x} + 2}{\sqrt{x}} - \dfrac{\sqrt{x}}{\sqrt{x} -...
Đọc tiếp

RÚT GỌN CÁC BIỂU THỨC SAU:

21) \(A = \left(\dfrac{x\sqrt{x} + 1}{x - 1} - \dfrac{x - 1}{\sqrt{x} - 1}\right) : \left(\sqrt{x} + \dfrac{\sqrt{x}}{\sqrt{x} - 1}\right) \)

22) \(A = \left(\dfrac{x}{\sqrt{x} - 1} - \sqrt{x}\right) : \left(\dfrac{\sqrt{x} + 1}{\sqrt{x}} - \dfrac{1}{1 - \sqrt{x}} + \dfrac{2 - x}{x - \sqrt{x}}\right)\)

23) \(A = \left(\dfrac{\sqrt{x} - 4}{x - 2\sqrt{x}} - \dfrac{3}{2 - \sqrt{x}}\right) : \left(\dfrac{\sqrt{x} + 2}{\sqrt{x}} - \dfrac{\sqrt{x}}{\sqrt{x} - 2}\right)\)

24) \(A = \left(\dfrac{2x + 1}{x\sqrt{x} - 1} + \dfrac{1}{1 - \sqrt{x}}\right) : \left(1 - \dfrac{x - 2}{x + \sqrt{x} + 1}\right)\)

25) \(A = 1 : \left(\dfrac{x + 2\sqrt{x} - 2}{x\sqrt{x} + 1} - \dfrac{\sqrt{x} -1}{x - \sqrt{x} + 1} + \dfrac{1}{\sqrt{x} + 1}\right)\)

26) \(A = \left(\dfrac{\sqrt{x}}{\sqrt{x} + 2} - \dfrac{3}{2 - \sqrt{x}} + \dfrac{3\sqrt{x} - 2}{x - 2}\right) : \left(\dfrac{\sqrt{x} + 3}{\sqrt{x} - 2} + \dfrac{2\sqrt{x}}{2\sqrt{x} - x}\right)\)

27) \(P = \left(\dfrac{4\sqrt{x}}{2 + \sqrt{x}} + \dfrac{8}{4 - x}\right) : \left(\dfrac{\sqrt{x} - 1}{x - 2\sqrt{x}} - \dfrac{2}{\sqrt{x}}\right)\)

1

21: ĐKXĐ: x>0; x<>1

\(A=\left(\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}-x+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{x}\)

\(=\dfrac{-x+\sqrt{x}+2}{\sqrt{x}+1}\cdot\dfrac{1}{x}\)

\(=\dfrac{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}=\dfrac{-\sqrt{x}+2}{x}\)

22:
DKXĐ: x>0; x<>1

\(A=\dfrac{x-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}:\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}+\dfrac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-1+\sqrt{x}+2-x}\)

\(=\dfrac{x}{\sqrt{x}+1}\)

23: ĐKXĐ: x>0; x<>4

\(A=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-4}\)

\(=\dfrac{-4\sqrt{x}+4}{4}=-\sqrt{x}+1\)

24: ĐKXĐ: x>=0; x<>1

\(A=\dfrac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+2}{x+\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+3}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

25:

ĐKXĐ: x>=0; x<>1

\(A=1:\dfrac{x+2\sqrt{x}-2-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{2x+\sqrt{x}-1-x+1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x+\sqrt{x}}=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

27: ĐKXĐ: x>0; x<>4

\(P=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4x-8\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-1-2\sqrt{x}+1}\)

\(=\dfrac{4\left(x-2\sqrt{x}-2\right)}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}}{-\sqrt{x}}\)

\(=\dfrac{-4\left(x-2\sqrt{x}-2\right)}{\sqrt{x}+2}\)

5 tháng 9 2023

câu 26 đâu?

Ta có: \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1}{\sqrt{x}}\)

31 tháng 8 2021

\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{\sqrt{\left(x\right)^2}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{x-1}{\sqrt{x}}\)