K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 3 2023

Do (d) đi qua E và G nên thay tọa độ E và G vào pt (d) ta được:

\(\left\{{}\begin{matrix}a.1+b=-3\\a.\left(-2\right)+b=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\-2a+b=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a=-9\\-2a+b=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=0\end{matrix}\right.\)

Vậy pt (d) là: \(y=-3x\)

1: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a+b=-2\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=1-2a=1-2\cdot\left(-3\right)=7\end{matrix}\right.\)

2: Vì (d)//y=-3x+2 nên a=-3

Vậy: y=-3x+b

Thay x=3 và y=3 vào y=-3x+b, ta được:

b-9=3

hay b=12

23 tháng 2 2022

sao ngắn v bn @@

7 tháng 8 2019

Đáp án B

16 tháng 12 2023

a: Thay x=1 và y=2 vào y=ax+b, ta được:

\(a\cdot1+b=2\)

=>a+b=2

Thay x=0 và y=1 vào y=ax+b, ta được:

\(a\cdot0+b=1\)

=>b=1

a+b=2

=>a=2-b

=>a=2-1=1

Vậy: phương trình đường thẳng AB là y=x+1

b: Thay x=-1 vào y=x+1, ta được:

\(y=-1+1=0=y_C\)

vậy: C(-1;0) thuộc đường thẳng y=x+1

hay A,B,C thẳng hàng

c: Thay x=3 và y=2 vào y=x+1, ta được:

\(3+1=2\)

=>4=2(sai)

=>D(3;2) không thuộc đường thẳng AB

d: Gọi phương trình đường thẳng (d) cần tìm có dạng là y=ax+b(b\(\ne\)0)

Vì (d) vuông góc với AB nên \(a\cdot1=-1\)

=>a=-1

=>y=-x+b 

Thay x=3 và y=2 vào y=-x+b, ta được:

b-3=2

=>b=5

vậy: (d): y=-x+5

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

Vì $A, B\in (d)$ nên:

\(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2=-a+b\\ -1=3a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{4}\\ b=\frac{-7}{4}\end{matrix}\right.\)

Vậy PTĐT $(d)$ là: $y=\frac{1}{4}x-\frac{7}{4}$

PTĐT $(d')$ song song với $(d)$ có dạng: $y=\frac{1}{4}x+m$ với $m\neq \frac{-7}{4}$

NV
31 tháng 3 2023

Do (d) đi qua C và D, thay tọa độ C và D vào pt (d) ta được:

\(\left\{{}\begin{matrix}a.\left(-1\right)+b=1\\a.\left(-2\right)+b=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\-2a+b=-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=5\end{matrix}\right.\)

Phương trình (d) có dạng: \(y=4x+5\)