K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

\(F=x_1^2-3x_2-2013\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=-7\end{matrix}\right.\)

Vì \(x_1\) là nghiệm của PT nên \(x_1^2+3x_1-7=0\Leftrightarrow x_1^2=7-3x_1\)

\(\Leftrightarrow F=7-3x_1-3x_2-2013\\ F=-2006-3\left(x_1+x_2\right)=-2006-3\left(-3\right)=-1997\)

a: 7x+35=0

=>7x=-35

=>x=-5

b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)

=>8-x-8(x-7)=1

=>8-x-8x+56=1

=>-9x+64=1

=>-9x=-63

hay x=7(loại)

4 tháng 3 2022

a, \(7x=-35\Leftrightarrow x=-5\)

b, đk : x khác 7 

\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)

vậy pt vô nghiệm 

2, thiếu đề 

ĐKXĐ: \(x\notin\left\{2;-1;\dfrac{-3\pm\sqrt{17}}{2}\right\}\)

\(\dfrac{x}{x^2-x-2}+\dfrac{3x}{x^2+3x-2}=1\)

=>\(\dfrac{x\left(x^2+3x-2\right)+3x\left(x^2-x-2\right)}{\left(x^2-x-2\right)\left(x^2+3x-2\right)}=1\)

=>\(\dfrac{x^3+3x^2-2x+3x^3-3x^2-6x}{\left(x^2-2\right)^2+2x\left(x^2-2\right)-3x^2}=1\)

=>\(4x^3-8x=\left(x^2-2\right)^2+2x\left(x^2-2\right)-3x^2\)

=>\(4x\left(x^2-2\right)=\left(x^2-2\right)^2+2x\left(x^2-2\right)-3x^2\)

=>\(\left(x^2-2\right)^2-2x\left(x^2-2\right)-3x^2=0\)

=>\(\left(x^2-2\right)^2-3x\left(x^2-2\right)+x\left(x^2-2\right)-3x^2=0\)

=>\(\left(x^2-2\right)\left(x^2-2-3x\right)+x\left(x^2-2-3x\right)=0\)

=>\(\left(x^2+x-2\right)\left(x^2-3x-2\right)=0\)

=>\(\left(x+2\right)\left(x-1\right)\left(x^2-3x-2\right)=0\)

=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\\x^2-3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(nhận\right)\\x=1\left(nhận\right)\\x=\dfrac{3\pm\sqrt{17}}{2}\left(nhận\right)\end{matrix}\right.\)

a: =>x(x+3)=0

=>x=0 hoặc x=-3

b: =>x(1-2x)=0

=>x=0 hoặc x=1/2

c: =>(x-7)(2x+3-x)=0

=>(x-7)(x+3)=0

=>x=7 hoặc x=-3

d: =>(x-2)(3x-1-x-3)=0

=>(x-2)(2x-4)=0

=>x=2

20 tháng 3 2023

a)

`x^2 +3x=0`

`<=>x(x+3)=0`

\(< =>\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

b)

`x-2x^2 =0`

`<=>x(1-2x)=0`

\(< =>\left[{}\begin{matrix}x=0\\1-2x=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

c)

`(x-7)(2x+3)=x(x-7)`

`<=>(x-7)(2x+3)-x(x-7)=0`

`<=>(x-7)(2x+3-x)=0`

`<=>(x-7)(x+3)=0`

\(< =>\left[{}\begin{matrix}x-7=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

d)

`(x-2)(x+3)=(x-2)(3x-1)`

`<=>(x-2)(x+3)-(x-2)(3x-1)=0`

`<=>(x-2)(x+3-3x+1)=0`

`<=>(x-2)(-2x+4)=0`

\(< =>\left[{}\begin{matrix}x-2=0\\-2x+4=0\end{matrix}\right.\\ < =>x=2\)

Câu 1: 

1: Ta có: \(P=\left(\dfrac{x^2}{x^2-3}+\dfrac{2x^2-24}{x^4-9}\right)\cdot\dfrac{7}{x^2+8}\)

\(=\left(\dfrac{x^2\left(x^2+3\right)}{\left(x^2-3\right)\left(x^2+3\right)}+\dfrac{2x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\right)\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+3x^2+2x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+5x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+8x^2-3x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^2\left(x^2+8\right)-3\left(x^2+8\right)}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{\left(x^2+8\right)\left(x^2-3\right)}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{7}{x^2+3}\)

NV
3 tháng 4 2021

Câu 2a đề sai, pt này ko giải được

2b.

\(P\left(x\right)=\left(2x+7\right)\left(x^2-4x+4\right)+\left(a+20\right)x+\left(b-28\right)\)

Do \(\left(2x+7\right)\left(x^2-4x+4\right)⋮\left(x^2-4x+4\right)\)

\(\Rightarrow P\left(x\right)\) chia hết \(Q\left(x\right)\) khi \(\left(a+20\right)x+\left(b-28\right)\) chia hết \(x^2-4x+4\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+20=0\\b-28=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-20\\b=28\end{matrix}\right.\)

3a.

\(VT=\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}=\dfrac{2+x^2+y^2}{1+x^2+y^2+x^2y^2}=1+\dfrac{1-x^2y^2}{1+x^2+y^2+x^2y^2}\le1+\dfrac{1-x^2y^2}{1+2xy+x^2y^2}\)

\(VT\le1+\dfrac{\left(1-xy\right)\left(1+xy\right)}{\left(xy+1\right)^2}=1+\dfrac{1-xy}{1+xy}=\dfrac{2}{1+xy}\) (đpcm)

3b

Ta có: \(n^3-n=n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 6

\(\Rightarrow n^3\) luôn đồng dư với n khi chia 6

\(\Rightarrow S\equiv2021^{2022}\left(mod6\right)\)

Mà \(2021\equiv1\left(mod6\right)\Rightarrow2021^{2020}\equiv1\left(mod6\right)\)

\(\Rightarrow2021^{2022}-1⋮6\)

\(\Rightarrow S-1⋮6\)

11 tháng 9 2021

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

17 tháng 5 2018

a) |x – 2| = |3x| ⇔ x – 2 = 3x hoặc x – 2 = –3x

⇔ 2x = –2 hoặc 4x = 2 ⇔ x = –1 hoặc x = 1/2

Tập nghiệm: S = {-1;1/2}

b) Điều kiện: 3x ≥ 0 ⇔ x ≥ 0. Khi đó:

|x – 2| = 3x

⇔ x – 2 = 3x hoặc x – 2 = –3x

⇔ 2x = –2 hoặc 4x = 2

⇔ x = –1 hoặc x = 1/2

Vì x ≥ 0, nên ta lấy x = 1/2. Tập nghiệm: S = 1/2.