K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2015

1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9

2. 

Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)

 

 

                                                                          

21 tháng 11 2015

chưa hẳn số chính phương bao giờ cũng TC = các chữ số đó đâu

VD: 21 không là số chính phương

81=92 là số chính phương

7 tháng 4 2019

Đặt A là số cần tìm. Ta có: A= 5m^5 = 3.n^3 = 2.p^2

Như vậy A có các ước nguyên tố 5,3,2. Mà A là số bé nhất thỏa mãn nên ta có A = 5^a.3^b.2^c

Xét nhân tử 5^a, vì A/3=n^3, A/2=p^2 nên n^3,p^2 chứa nhân tử 5^a=> a phải chia hết cho 2,3 

Mặt khác A=5.m^5 nên a chia 5 dư 1 => a nhỏ nhất là 6

Tương tự ta có b chia hết cho 2,5, chia 3 dư 1 nên b nhỏ nhất là 10

c chia hết cho 5,3 chia 2 dư 1 nên c nhỏ nhất là 15

Vậy A nhỏ nhất là 5^6.3^10.2^15. Thử lại thỏa mãn.

4 tháng 6 2020

Vậy là kết quả ra bn. Mik vẫn chưa hiểu

NV
20 tháng 3 2022

Do p là SNT nên \(p^4\) chỉ có các ước nguyên dương là \(1;p;p^2;p^3;p^4\)

\(\Rightarrow1+p+p^2+p^3+p^4=k^2\) với \(k\in N\)

\(\Rightarrow\left(2k\right)^2=4p^4+4p^3+4p^2+4p+4=\left(2p^2+p\right)^2+\left(3p^2+4p+4\right)>\left(2p^2+p\right)^2\)

Đồng thời: \(4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+2\right)^2-5p^2< \left(2p^2+p+2\right)^2\)

\(\Rightarrow\left(2p^2+p\right)^2< \left(2k\right)^2< \left(2p^2+p+2\right)^2\)

\(\Rightarrow\left(2k\right)^2=\left(2p^2+p+1\right)^2\)

\(\Rightarrow4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+1\right)^2\)

\(\Rightarrow p^2-2p-3=0\Rightarrow\left[{}\begin{matrix}p=-1\left(ktm\right)\\p=3\left(tm\right)\end{matrix}\right.\)

20 tháng 3 2022

Em cảm ơn ạ

DD
12 tháng 9 2021

Vì \(p\)là số nguyên tổ nên tổng các ước nguyên dương của \(p^4\)là \(1+p+p^2+p^3+p^4\).

Đặt \(p^4+p^3+p^2+p+1=n^2\)

\(\Leftrightarrow4p^4+4p^3+4p^2+4p+1=4n^2\)

Ta có: 

\(4p^4+4p^3+4p^2+4p+4>4p^4+4p^3+p^2=\left(2p^2+p\right)^2\)

\(4p^4+4p^3+4p^2+4p+4< 4p^4+4p^3+9p^2+4p+4=\left(2p^2+p+2\right)^2\)

Suy ra \(\left(2p^2+p\right)^2< 4n^2< \left(2p^2+p+2\right)^2\)

\(\Rightarrow\left(2n\right)^2=\left(2p^2+p+1\right)^2=4p^4+4p^3+5p^2+2p+1\)

\(\Rightarrow p^2-2p-3=0\)

\(\Leftrightarrow\left(p+1\right)\left(p-3\right)=0\)

\(\Rightarrow p=3\)thỏa mãn. 

Vậy \(p=3\).

27 tháng 7 2023

Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2     (n  N)
Suy ra : 4n= 4p+ 4p+ 4p+ 4p + 4 > 4p+ 4p+ p= (2p+ p)2
Và  4n2 < 4p+ p2 + 4 + 4p+ 8p+ 4p = (2p+ p + 2)2.
Vậy : (2p+ p)< (2n) < (2p+ p + 2)2.
Suy ra :(2n)2 = (2p+ p + 2)2 = 4p+ 4p+5p+ 2p + 1

vậy 4p + 4p+5p+ 2p + 1 = 4p+ 4p+4p+4p + 4   (vì cùng bằng 4n2 )

=> p- 2p - 3 = 0  => (p + 1) (p - 3) = 0

do p > 1  => p - 3 = 0   => p = 3

3 tháng 9 2017

Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2     (n  N)
Suy ra : 4n= 4p+ 4p+ 4p+ 4p + 4 > 4p+ 4p+ p= (2p+ p)2
Và  4n2 < 4p+ p2 + 4 + 4p+ 8p+ 4p = (2p+ p + 2)2.
Vậy : (2p+ p)< (2n) < (2p+ p + 2)2.
Suy ra :(2n)2 = (2p+ p + 2)2 = 4p+ 4p+5p+ 2p + 1

vậy 4p + 4p+5p+ 2p + 1 = 4p+ 4p+4p+4p + 4   (vì cùng bằng 4n2 )

=> p- 2p - 3 = 0  => (p + 1) (p - 3) = 0

do p > 1  => p - 3 = 0   => p = 3

22 tháng 5 2020

phải là (2p+p+1)2